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Abstract

Computational reproducibility remains limited in psychological research, despite widespread

norms for sharing data and analysis code. One reason is that reproducibility exists on a

continuum, ranging from partial transparency—such as providing scripts or software version

numbers—to fully executable research compendia that regenerate all results from raw code. In

this article, we introduce Nix and the {rix} R package as a practical framework for achieving full

computational reproducibility in simulation-based research. We provide a step-by-step tutorial

demonstrating how {rix} can be used to define, build, and share isolated, project-specific software

environments that precisely capture R versions, package dependencies, system libraries, and

integrated development environments. We further illustrate this workflow by reproducing a

complete manuscript using Quarto and the {apaquarto} extension, showing how analyses, figures,

and text can be regenerated in a single, executable pipeline. Together, these tools lower the

technical barrier to robust, end-to-end reproducibility and offer a scalable solution for simulation

studies and methodological research in psychology and related fields.

Keywords: reproducibility, Nix, simulation studies, R, computational methods
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Why Risk it, When You Can {rix} it: A Tutorial for Computational Reproducibility Focused

on Simulation Studies

Psychological science is in the midst of a credibility revolution, which has prompted

substantial progress in how research is conducted and evaluated (Vazire, 2018). Yet, despite

notable progress, a key cornerstone of science, reproducibility (i.e., the ability to precisely

reproduce the results of a study or studies based on provided data, code, materials, and

software/hardware) remains limited (Hardwicke et al., 2020). Hence, ensuring reproducibility

remains an open and pressing challenge for psychological science.

Addressing this gap is complicated by the fact that reproducibility is not a binary feature

but instead exists along a continuum (Peng, 2011). At the lower end, reproducibility may be

interpreted as sharing only a manuscript. Further along the spectrum, it may involve providing

partial code, complete analysis scripts, or publicly accessible datasets. At the highest level,

reproducibility entails documenting a fully specified computational environment that allows

others to recreate identical results—from raw data to final manuscript output—with minimal

friction. As a result, researchers may implicitly target different points on this continuum, and

efforts to improve reproducibility can diverge substantially in both goals and implementation.

Open science initiatives have made considerable progress in encouraging movement along

this spectrum. For example, journals now offer open-science badges (Kidwell et al., 2016), best

practices have been developed to make data sharing routine (Levenstein & Lyle, 2018), and

platforms such as the Open Science Framework (OSF) provide infrastructure for storing and

sharing research materials (Nosek et al., 2015). However, these efforts primarily target the lower

to middle portions of the continuum, emphasizing what is shared rather than how shared materials

can be executed in practice.

Data and code are never fully self-sufficient to reproduce a set of findings (Epskamp,

2019; Peikert & Brandmaier, 2021; Wiebels & Moreau, 2021; Ziemann et al., 2023). Assuming

the data and code are error-free, reproducibility depends on a hierarchy of software

components—collectively referred to as dependencies—including the programming language
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version, the packages used in the analysis, and the system libraries on which those packages rely.

When these dependencies differ from those used in the original analysis, code may fail, behave

inconsistently across machines, or yield conflicting numerical results (Baker et al., 2024; Glatard

et al., 2015; Hodges et al., 2023; Nosek et al., 2022). These issues are particularly acute for

simulation studies, which rely on complex codebases, versioned dependencies, and intricate

software configurations (Luijken et al., 2024; Siepe et al., 2024).

To make this concrete, we use computational environment to refer to the complete software

context required for an analysis to run successfully—the programming language version, package

versions, system libraries, and operating system (Rodrigues, 2023; Rodrigues & Baumann, 2026).

We define computational environment reproducibility as the ability to reconstruct this entire set of

software dependencies on any machine and at any future time, such that executing the same code

yields the same numerical results. Empirical assessments show that current practice falls short of

this ideal. Siepe et al. (2024) report that nearly two-thirds of simulation studies in psychology

provide no accompanying code, and among those that do, documentation of the computational

environment is rarely included. This gap is consequential: simulation studies inform

methodological recommendations, meaning that insufficient reproducibility undermines

confidence in those recommendations (Luijken et al., 2024; White et al., 2024).

Arguably, these challenges persist because researchers must navigate a fragmented

landscape of solutions, each addressing only part of the problem. Package-level managers such as

{renv} (Ushey, 2024) and {groundhog} (Simonsohn, 2020) stabilize R package versions but do

not manage the R interpreter itself or the system-level libraries those packages depend on.

Workflow orchestration tools such as {targets} (Landau, 2021) and Make (Feldman, 1979)

support reproducibility in a different sense: they specify the structure of an analysis by

formalizing the order in which steps should run and by tracking dependencies among intermediate

results. These tools clarify how an analysis proceeds, but they assume that the software stack

required to run each step is already stable. Containerization tools such as Docker, including

R-focused implementations like Rocker (Boettiger, 2015; Boettiger & Eddelbuettel, 2017) offer a
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more comprehensive approach by bundling the full environment (i.e., operating system, system

libraries, interpreter versions, and packages) into a single executable image. Yet their use requires

familiarity with Linux system administration, and even containerization may suffer from temporal

drift when Dockerfiles rely on mutable upstream repositories (Malka et al., 2024). For a detailed

comparison of these tools and their limitations, see Rodrigues and Baumann (2026). Researchers

thus face a difficult choice between solutions that are accessible but incomplete or approaches that

are powerful but demand technical expertise.

In this article, therefore, we focus specifically on computational environment

reproducibility as the foundation upon which other reproducibility practices depend. For that, we

introduce Nix (Dolstra et al., 2004), a functional software1 ecosystem designed to make software

installation deterministic, and {rix} (Rodrigues & Baumann, 2025), an R interface that allows

researchers to use Nix without needing deep knowledge of its underlying language or

infrastructure. Our main objective with the tutorial is not to introduce a specific workflow

orchestration system or to prescribe a particular analytic structure. Instead, we aim to show what

Nix and {rix} are and how they can establish a stable, cross-platform environment within which

any simulation study—whether organized in simple, documented script sequences (e.g., .R files

that source() others), through more formal orchestration tools (e.g., {targets}) or embedded as

code chunks in .Rmd or .qmd—can be executed reliably.

We illustrate these ideas through a reproducible simulation study conducted in R,

culminating in this automated APA-formatted manuscript generated with apaquarto (Schneider,

2024). Although the example centers on R because of its prominence in psychological

methodology, the principles underlying environment reproducibility with {rix} apply equally to

other languages, including Python and Julia, and to different development environments such as

RStudio, VS Code, Emacs, or Positron. At the end of the article, we also briefly introduce

{rixpress} (Rodrigues, 2025), a workflow orchestration tool that builds on Nix to coordinate

1 Functional is used in the sense of functional programming (pure functions, immutability, explicit inputs), not in the
colloquial sense of working.
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pipelines across R, Python, and Julia.

A Practical Example: Setting up a Reproducible Simulation Study with {rix}

Imagine you have just been awarded a grant to conduct a large-scale simulation study. The

study is designed to evaluate the performance of a statistical estimator under varying

data-generating conditions (see Appendix A for full technical details). This tutorial is organized

around this scenario. We use this example to ground our discussion into a typical methods

section, but readers can follow the tutorial without engaging deeply with the simulation itself.

In practice, simulation studies are typically organized into multiple component files, each

corresponding to a distinct analytical stage, a modular structure that facilitates development and

debugging. In our case, the simulation is organized into five sequential scripts: data generation

(01_data_generation.R), model specification (02_models.R), simulation execution

(03_run_simulation.R), performance metric calculation (04_performance_metrics.R), and

results visualization (05_plots.R). However, because our focus is on the reproducibility of the

entire manuscript, we embed all code directly within this document as executable chunks in a

single .qmd file. When rendered, the simulation runs from start to finish, producing results and

figures automatically. This approach would be impractical for many real-world simulation studies,

which are often too computationally intensive. We return to this trade-off later in the tutorial.

Now suppose a researcher attempts to reproduce the simulation results reported in the

article. What might prevent them from obtaining identical outcomes? The natural first concern is

the version of packages. Installing R packages at a later time may lead to errors if functions have

been renamed or deprecated (e.g., lavaan:::lav_utils_get_ancestors renamed to

lavaan:::lav_graph_get_ancestors), or to subtly different results due to changes in default

settings (e.g., stringsAsFactors defaulting to FALSE as of R 4.0) or numerical

implementations. Beyond package versioning, many packages rely on system-level libraries that

must be installed separately from R. Our simulation illustrates this dependency structure directly:

the {rvinecopulib} package interfaces with a C++ backend and links against external libraries

such as Boost, Eigen, and RcppThread (Nagler & Vatter, 2025).
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The R language version introduces another layer of dependency. Code written for R 4.0

may rely on syntax or functionality that is unavailable in earlier versions (e.g., the native pipe |>

introduced in R 4.1). More subtly, changes to R’s random number generation across major

versions mean that identical code executed with the same seed can nevertheless produce different

random sequences (Ottoboni & Stark, 2018). For simulation studies, where specific random draws

often underpin reported results, this version sensitivity is consequential.

Finally, when analyses are embedded in a literate programming workflow (i.e., documents

that combine narrative text and executable code; dynamic document generation) additional layers

of software dependencies arise. For example, rendering R Markdown (.rmd) or Quarto

documents (.qmd) requires both a document conversion tool (e.g., Pandoc, which converts .rmd

or .qmd files into formats such as PDF or HTML) and a typesetting system such as a LaTeX

distribution or Typst. Each of these components introduces its own versioning constraints and

platform-specific installation requirements. Taken together, these layers highlight that

reproducibility depends not only on code and data, but also on the broader computational

environment in which analyses are executed.

Nix and {rix}: A Comprehensive Solution

A potential solution to this problem is Nix (Dolstra et al., 2004), a software ecosystem

whose primary concern is reproducible, declarative builds. To achieve this Nix is a programming

language, a build tool and a package manager. This article focuses mostly on Nix the package

manager. Most package managers (think of Apple’s or Android’s app stores) are imperative: they

modify a system’s state as they install or update software. Nix, in contrast, treats build instructions

and dependencies as immutable, enforcing reproducible, declarative, and isolated environments

across platforms. This allows researchers to specify exactly which versions of programming

languages, packages, and system libraries an analysis requires, and to recreate that environment

reliably on any machine.

Unlike familiar tools such as install.packages() in R, apt-get on Linux, or uv in

Python—which typically manage only a single layer of the software stack—Nix handles language
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versions, package versions, and system-level dependencies within a single framework (Rodrigues

& Baumann, 2025). Rather than installing software into shared system directories, Nix builds

each environment as an explicit, self-contained specification. As a result, multiple environments

can coexist without conflict, and analyses can be rerun months or years later under identical

computational conditions.

This unified approach directly addresses the fragmented landscape described above.

Where researchers would otherwise need to coordinate separate tools for package management,

interpreter versions, and system dependencies, Nix brings all three together within a single

declarative model, lowering the barrier to fully reproducible computational workflows.

Core Principles

Rather than installing software into global directories (e.g., /usr/lib), Nix places every

package in its own directory under /nix/store. Each package path contains a cryptographic

hash representing its precise inputs—source code, dependencies, and build instructions. Because

these paths are content-addressed, multiple versions of the same software can coexist without

conflict. A researcher can, for example, maintain projects requiring R 4.1.0 and R 4.3.3 side by

side, or use different package versions across analyses, switching between them seamlessly

(Rodrigues & Baumann, 2025).

The Nix ecosystem is built around nixpkgs, a version-controlled repository comprising

more than 120,000 packages, including nearly all of CRAN and Bioconductor. By pinning a

specific commit or date, researchers freeze the entire software stack (i.e., R itself, R packages, and

all system libraries) at the time of this writing. This eliminates the system-dependency problems

that tools like {renv} cannot address (Rodrigues & Baumann, 2025). This architecture also

ensures stability over time. Empirical work has shown strong rebuildability and reproducibility

rates for historical nixpkgs snapshots (Rodrigues & Baumann, 2026). Combined with binary

caches, which often allow environments to materialize in seconds, Nix becomes practical for

interactive research workflows (Rodrigues & Baumann, 2025).
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The {rix} Package: R Interface to Nix

As previously stated, Nix is also a functional programming language. Because the Nix

package manager is declarative, it requires expressions written in this language to install software.

However, since Nix is a functional programming language unfamiliar to most researchers, we

recommend using {rix} to lower this barrier. The {rix} package provides an R-native interface: a

single call to rix() generates complete Nix configurations from standard R syntax, specifying R

versions, CRAN packages, system libraries, and even Python or Julia components when required.

Users never need to read or write Nix code directly, as {rix} translates automatically (Rodrigues

& Baumann, 2025).

A key feature of {rix} is its integration with rstats-on-nix, a community-maintained fork

offering daily CRAN snapshots and weekly tested environments on Linux and macOS.

Researchers can request, for example, rix(date = "2024-12-14") to obtain a validated and

reproducible environment without manually assessing compatibility. After the configuration is

generated, nix_build() instantiates the environment, and binary caches typically allow this to

complete within seconds (Rodrigues & Baumann, 2025).

Although Nix is capable of replacing tools like Docker for isolation or {renv} for package

management, it does not require an all-or-nothing transition. Researchers can adopt it gradually

and use it alongside familiar tooling. For instance, by building Docker images with Nix,

converting existing {renv} lockfiles, or running {targets} pipelines within a Nix-defined

environment (Rodrigues & Baumann, 2025). This allows Nix to strengthen reproducibility while

preserving established workflows. We will come back to this after the tutorial.

Step 1: Installing Nix and {rix}

Before proceeding, both Nix and the {rix} R package need to be installed. Installation

procedures differ across operating systems (Windows via WSL2, Linux, and macOS), and

detailed, up-to-date instructions are maintained in the official {rix} documentation:

• Linux and Windows (WSL2): https:

//docs.ropensci.org/rix/articles/b1-setting-up-and-using-rix-on-linux-and-windows.html

https://docs.ropensci.org/rix/articles/b1-setting-up-and-using-rix-on-linux-and-windows.html
https://docs.ropensci.org/rix/articles/b1-setting-up-and-using-rix-on-linux-and-windows.html
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• macOS: https://docs.ropensci.org/rix/articles/b2-setting-up-and-using-rix-on-macos.html

Once Nix is installed2, there are two ways to access {rix}, depending on whether R is

already installed on your system. In this tutorial, we proceed as if R was already installed3

(Listing 1):

Listing 1 Installing {rix} from CRAN or developmental version

# CRAN version
install.packages("rix")
# Development version
install.packages(

"rix",
repos = c(

"https://ropensci.r-universe.dev"
)

)

Step 2: Specifying the Computational Environment

After that, we need to establish a reproducible environment by creating a script that will

generate the environment specification. We recommend creating a file named generate-env.R

(or similar) in the project directory. This script will use the rix() function from the {rix}

package to produce a default.nix file—a declarative specification that precisely defines all

software dependencies required for the project.

In our case, where we use literate programming for generating the manuscript, we

implement the following environment specification, which can be found on the GitHub repository

as a file named gen-env.R (Listing 2):

2 It is worth noting that {rix} can generate Nix expressions even without Nix installed on your system—you can write
a default.nix file without Nix, but you cannot build or enter the resulting environment unless Nix is installed
(Rodrigues & Baumann, 2025).
3 We, however, recommend uninstalling your local R and letting Nix manage R, R packages, and other tools entirely.
This approach avoids potential conflicts between system-installed and Nix-managed software, an issue we will
illustrate later in this tutorial. See https://docs.ropensci.org/rix/articles/setting-up-linux-windows.html#
case-1-you-dont-have-r-installed-and-wish-to-install-it-using-nix-as-well for more details.

https://docs.ropensci.org/rix/articles/b2-setting-up-and-using-rix-on-macos.html
https://docs.ropensci.org/rix/articles/setting-up-linux-windows.html#case-1-you-dont-have-r-installed-and-wish-to-install-it-using-nix-as-well
https://docs.ropensci.org/rix/articles/setting-up-linux-windows.html#case-1-you-dont-have-r-installed-and-wish-to-install-it-using-nix-as-well
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Listing 2 Environment specification for the manuscript using rix()

library(rix)

rix(
date = "2026-01-14",
r_pkgs = c(

"rix", "quarto", "knitr", "marginaleffects",
"simhelpers", "ggplot2", "doParallel", "doRNG", "cowplot",
"dplyr", "svglite", "rvinecopulib"

),
system_pkgs = c("quarto"),
tex_pkgs = c("amsmath", "ninecolors", "apa7", "scalerel",

"threeparttable", "threeparttablex", "endfloat", "environ",
"multirow", "tcolorbox", "pdfcol", "tikzfill", "fontawesome5",
"framed", "newtx", "fontaxes", "xstring", "wrapfig", "tabularray",
"siunitx", "fvextra", "geometry", "setspace", "fancyvrb",
"anyfontsize"

),
ide = "rstudio",
project_path = ".",
overwrite = TRUE

)

Thus, note that we have more than just the R packages specified for the simulation scripts.

This happens because we also included what is needed for the manuscript generation, not solely

for the simulation code. In Appendix B, we mention more specifically the reasons for adding each

package in r_pkgs() and tex_pkgs(). For now, we focus more on clarifying the different

arguments for the rix() function.

The Environment Generation Script

The rix() function4 constructs this specification through a series of parameters that

collectively describe the computational environment. Each parameter serves a distinct purpose in

defining the environment’s characteristics.

4 For an overarching information on the function rix(), we suggest the following {rix} documentation:
https://docs.ropensci.org/rix/articles/project-environments.html

https://docs.ropensci.org/rix/articles/project-environments.html


REPRODUCIBILITY WITH {RIX} 13

Specifying the R version. Researchers must first determine which version of R to use.

This can be accomplished in two ways: The r_ver argument accepts an exact version string (e.g.,

“4.3.3”) or special designations such as “latest-upstream” for the most recent stable release.

Alternatively, the date argument specifies a particular date (e.g., “2024-11-15”), which ensures

that R and all packages correspond to the versions available on that date. The date-based approach

is generally preferable for reproducibility, as it captures a complete snapshot of the R ecosystem at

a single point in time. For this tutorial, as shown on top, we use the date parameter to ensure

temporal consistency across all software components (Rodrigues & Baumann, 2025) (see {rix}

documentation for more: https://docs.ropensci.org/rix/articles/project-environments.html).

Declaring R package dependencies. The r_pkgs argument accepts a character vector

listing all required R packages by their CRAN names. These packages will be installed from the

version repository corresponding to the specified date or R version. It is important to list all

packages that the analysis will load directly; dependencies of these packages are automatically

resolved by Nix. For packages requiring specific versions not corresponding to the chosen date,

researchers can specify exact versions using the syntax "packagename@version" (e.g.,

"ggplot2@2.2.1"). For packages available only on GitHub or other Git repositories, the

git_pkgs argument accepts a list structure containing repository URLs and specific commit

hashes. For example:

Listing 3 Example for the git_pkgs argument

git_pkgs = list(
package_name = "marginaleffects",
repo_url = "https://github.com/vincentarelbundock/marginaleffects",
commit = "304bff91dc31ae28b227a8485bfa4f7bdc86d625"

)

This ensures that exact development versions are obtained (Rodrigues & Baumann, 2025).

For our simulation study, all packages were used with their CRAN versions (see {rix}

documentation for more details: https://docs.ropensci.org/rix/articles/installing-r-packages.html).

https://docs.ropensci.org/rix/articles/project-environments.html
https://docs.ropensci.org/rix/articles/installing-r-packages.html
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Including system-level dependencies. Many R-based workflows require tools beyond R

packages. The system_pkgs parameter specifies system-level software such as Quarto for

document generation, Git for version control, or Pandoc for document conversion. Critically, we

include Quarto as a system package because this tutorial demonstrates full computational

reproducibility—not merely of the simulation code, but of the complete manuscript itself. Our

manuscript uses the apaquarto extension for APA formatting, stored in the project’s

_extensions/ directory (Rodrigues & Baumann, 2025) (see {rix} documentation for more:

https://docs.ropensci.org/rix/articles/installing-system-tools.html).

Specifying LaTeX packages. The tex_pkgs parameter specifies LaTeX packages

needed for PDF compilation. When any packages are listed, Nix automatically includes a minimal

TexLive distribution (scheme-small) as a base, to which the specified packages are added.

Determining the required LaTeX packages may involve some trial and error—Quarto’s error

messages during, for example, the PDF rendering indicate which packages are missing, and these

can then be added to tex_pkgs (see {rix} documentation for more:

https://docs.ropensci.org/rix/articles/installing-system-tools.html). The tex packages included in

the above code offer a nice starting point for researchers wanting to create manuscripts using

LaTeX.

Configuring the development environment. The ide parameter controls whether an

integrated development environment (IDE) is included in the Nix environment, allowing users to

interactively develop and run code within their editor of choice. When ide is specified, the

project can be opened directly in the corresponding IDE, with all dependencies provided by the

Nix environment. For example, setting ide = "rstudio" installs a project-specific version of

RStudio inside the Nix environment. This is required for RStudio because, unlike most other

editors, it cannot attach to an external Nix shell unless it is itself installed via Nix. On macOS,

RStudio is only available through Nix for R versions 4.4.3 or later (or environments dated

2025-02-28 or later); for earlier R versions, alternative editors must be used. Other supported

IDEs include Positron (ide = "positron"), Visual Studio Code (ide = "code"), and

https://docs.ropensci.org/rix/articles/installing-system-tools.html
https://docs.ropensci.org/rix/articles/installing-system-tools.html
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command-line interfaces such as Radian (ide = "radian"). These tools may either be installed

directly within the Nix environment using the ide parameter, or users may rely on an existing

system installation by setting ide = "none" (or ide = "other") and configuring direnv to

automatically load the Nix environment when the project directory is opened5. All IDEs installed

via Nix are project-specific and do not interfere with system-wide installations. Detailed

configuration instructions are provided in the {rix} documentation:

https://docs.ropensci.org/rix/articles/configuring-ide.html

Setting file output parameters. The project_path parameter indicates where the

default.nix file should be written (“.” denotes the current directory), while overwrite

controls whether an existing file should be replaced. Adding to this, setting print = TRUE,

which is another argument, displays the generated specification in the console for immediate

verification (Rodrigues & Baumann, 2025).

Multi-language environment support. While this tutorial focuses on R, researchers

working across multiple programming languages can include Python or Julia in their

environments. The py_conf parameter accepts a list specifying a Python version and required

packages (Listing 4). Similarly, jl_conf enables Julia package installation. This capability is

particularly useful, for example, for projects requiring statistical computing in R alongside

machine learning pipelines in Python or numerical optimization in Julia (Rodrigues & Baumann,

2025) (see {rix} documentation for more:

https://docs.ropensci.org/rix/articles/installing-r-packages.html).

Listing 4 Including Python packages

py_conf = list(py_version = "3.12", py_pkgs = c("polars", "pandas"))

5 direnv is a lightweight utility that integrates with the user’s shell and automatically loads project-specific
environment settings when navigating into a directory (via a .envrc file), and unloads them when leaving. This
makes environment activation implicit and reduces the risk of running analyses in the wrong software context.

https://docs.ropensci.org/rix/articles/configuring-ide.html
https://docs.ropensci.org/rix/articles/installing-r-packages.html
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Generating the Environment Specification

After defining the computational environment, the rix() function must be executed to

generate the default.nix file. This can be done interactively by running rix() in an R console

(Listing 2). The resulting default.nix file serves as the complete environment specification and

contains all information required to recreate the project in a fully reproducible manner.

Step 3: Building and Using the Reproducible Environment

Once Step 2 is complete, build the reproducible environment by navigating to the study

directory in a terminal. You may use either the integrated Terminal in RStudio (Tools → Terminal

→ New Terminal) or an external system terminal from which you are running the Nix project.

From the study directory, run the following command (Listing 5):

Listing 5 Building the Nix environment

user@computer Why-risk-it-when-you-can-rix-it % nix-build

The expected output should look similar to (Listing 6):

Listing 6 Expected output from nix-build

unpacking 'https://github.com/rstats-on-nix/nixpkgs/archive/2025-08-25.tar.gz'
into the Git cache...

warning: ignoring untrusted substituter...
warning: ignoring the client-specified setting...
/nix/store/qa7fq20m2f94szsnqzciwv8h4n81w43v-nix-shell

This command builds the environment according to the specification. The first execution

will download and install all required packages, which may take a few minutes depending on

network speed and system resources. Subsequent builds use cached packages and complete in

seconds. Upon successful completion, a path to the constructed environment in the Nix store is

printed (here, /nix/store/qa7fq20m2f94szsnqzciwv8h4n81w43v-nix-shell), and a

symbolic link named result appears in the project directory pointing to this location.
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Note that the warnings indicate that you are not configured as a trusted user, so Nix cannot

use the rstats-on-nix binary cache and will instead compile packages from source, which is slower.

To enable binary caching, install the cachix client and configure the rstats-on-nix cache. See

https://docs.ropensci.org/rix/articles/binary-cache.html for instructions.

To activate the environment, run (Listing 7):

Listing 7 Activating the Nix environment

user@computer Why-risk-it-when-you-can-rix-it % nix-shell

The expected output (if you have configured yourself as a trusted user, otherwise the same

warnings will appear) should look similar to (Listing 8):

Listing 8 Expected output from nix-shell

unpacking 'https://flakehub.com/f/DeterminateSystems/nixpkgs-weekly/...'
into the Git cache...

[nix-shell:~/AMPPS/Why-risk-it-when-you-can-rix-it]$

This command drops the user into a shell where all specified packages and tools are

available. The shell prompt changes to indicate that a Nix environment is active (here,

[nix-shell:~/Desktop/AMPPS/Why-risk-it-when-you-can-rix-it]$). To verify that R is

being provided by Nix rather than a system installation, run which R. This should return a path

within /nix/store/. Moreover, from within the Nix shell, users can launch their IDE by typing

its name (e.g., rstudio or positron), which opens the IDE with the Nix environment active

(Listing 9)6

6 Please note that activating an RStudio instance via Nix does not automatically open the specific project directory
you are working in. We therefore recommend creating an RStudio project file (.Rproj) and opening that file when
using Nix to ensure that RStudio is correctly associated with the intended project and environment.

https://docs.ropensci.org/rix/articles/binary-cache.html
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Listing 9 Activating RStudio

[nix-shell:~/AMPPS/Why-risk-it-when-you-can-rix-it]$ rstudio

Reproducing the Complete Manuscript7

Within the nix shell, one is able to render the manuscript as follows in the terminal

(Listing 10):

Listing 10 Rendering the manuscript with Quarto

[nix-shell:~/AMPPS/Why-risk-it-when-you-can-rix-it]$
quarto render Manuscript/article.qmd

This command executes all code chunks in the manuscript, incorporates results (e.g.,

Table 1) and figures (e.g., Figure 1), and generates a formatted PDF following APA style

guidelines via the apaquarto extension (Schneider, 2024). This extension is saved in the project

repo already. To download this extension for your own work you can install the extension by using

the terminal (Listing 11):

Listing 11 Installing the apaquarto extension

user@computer Why-risk-it-when-you-can-rix-it % quarto use template
wjschne/apaquarto

or in the console (Listing 12):

Listing 12 Installing the apaquarto extension from R

quarto::quarto_use_template("wjschne/apaquarto")

The final document (.docx, .pdf, or .html) is saved directly in the project folder8. Because

7 See the {rix} documentation for more: https://docs.ropensci.org/rix/articles/literate-programming.html
8 Although we use apaquarto in this example, many alternative manuscript templates are available, and Nix is
agnostic to the specific template employed, provided the necessary extensions are installed.

https://docs.ropensci.org/rix/articles/literate-programming.html
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Quarto is installed as a system-level package in our Nix specification, the rendering occurs

entirely within a fully reproducible environment, ensuring consistent output across machines

regardless of local software configurations. If desired, the manuscript can also be reproduced

interactively by opening the project folder in the user’s preferred IDE.

At this point, it is also worth noting that Nix shells do not fully isolate you from your

existing system by default (as mentioned in footnote 2). For R users, this has a practical

implication: packages installed in your regular R library (outside of Nix) could potentially be

loaded when running R from within the Nix environment. The {rix} package addresses this

automatically—when you call rix(), it also executes rix_init(), which creates a

project-specific .Rprofile. This file configures R to ignore external package libraries and also

disables install.packages() within the environment. The rationale is straightforward: any

new packages should be added to default.nix and the environment rebuilt, preserving full

reproducibility (Rodrigues & Baumann, 2025). However, for stricter isolation9 that also prevents

access to other system programs not specified in default.nix, use the --pure flag (Listing 13):

Listing 13 Activating the Nix environment with strict isolation

nix-shell --pure

Reproducing the Simulation and Results

As previously mentioned, researchers may prefer not to use literate programming, or

embedding the simulation within a dynamic document may be impractical. In this case, one could

still follow the same steps shown thus far focusing only on the .R files while still benefiting from a

reproducible computational environment. For example, 03_run_simulation.R begins by

loading the required packages and sourcing other scripts that are needed:

As an illustration, if we were to focus solely on the computational reproducibility of the

9 For example, when preparing this manuscript without the --pure flag, quarto render worked successfully.
However, when using the --pure flag, the build failed. Running quarto check from within the Nix shell (i.e.,
nix-shell --run "quarto check") revealed that Quarto was still accessing the system’s LaTeX installation
(/Library/TeX/texbin) rather than being restricted to only what was specified in default.nix.
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Listing 14 Code for running simulation

library(marginaleffects)
...

# Source helper functions
source("Simulation_Scripts/01_data_generation.R")
...

code underlying the simulation and results, the environment specification would be considerably

simpler (Listing 15):

Listing 15 Environment specification for simulation-only computational reproducibility

rix(
date = "2026-01-14",
r_pkgs = c(

"simhelpers", "ggplot2", "doParallel", "doRNG", "cowplot", "dplyr",
"rvinecopulib", "marginaleffects"

),
ide = "rstudio",
project_path = ".",
overwrite = TRUE

)

After following Steps 1-3 with this simpler specification, the simulation study may be

reproduced within the Nix shell (Listing 16) as follows:

Listing 16 Running the complete simulation workflow

[nix-shell:~/AMPPS/Why-risk-it-when-you-can-rix-it]$
Rscript Simulation_Scripts/03_run_simulation.R

In the same way, we could proceed with 04_performance_metrics.R (Listing 17),

which loads the simulation results (in sim_results.rds) and calculates the performance metrics:

Similarly, 05_plots.R (Listing 18) uses those saved metrics (in

performance_summary.rds) to create the plots:
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Listing 17 Running the performance metrics calculation

[nix-shell:~/AMPPS/Why-risk-it-when-you-can-rix-it]$
Rscript Simulation_Scripts/04_performance_metrics.R

Listing 18 Generating the visualization plots

[nix-shell:~/AMPPS/Why-risk-it-when-you-can-rix-it]$
Rscript Simulation_Scripts/05_plots.R

Therefore, the key advantage of executing within nix-shell is that all dependencies (i.e.,

R version, packages, and system tools) match exactly those specified in default.nix. Note,

however, that this approach relies on manually running scripts in sequence. It ensures a

reproducible environment but does not formalize the workflow itself; dependencies between

scripts remain implicit in the code rather than explicitly declared.

Additional Considerations for Advanced Workflows

Thus far, we have presented Nix and {rix} as standalone solutions for computational

reproducibility, contrasting initially them with tools like {renv}, Docker, and {targets}. However,

these tools are not mutually exclusive, as in many cases, they can complement each other

(Rodrigues & Baumann, 2025). Additionally, as highlighted in previous literature (Peikert &

Brandmaier, 2021; Piccolo & Frampton, 2016; Siepe et al., 2024), fully reproducible research

benefits not only from a stable computational environment but also from explicit workflow

orchestration. We therefore briefly introduce {rixpress}, which extends Nix-based reproducibility

to formalized, multi-language pipelines. These topics are not covered in depth; our goal is simply

to clarify how these tools relate to one another and orient readers toward resources for more

advanced use cases.

Workflow Orchestration: {targets} and {rixpress}

Complex simulation studies often benefit from workflow management systems that track

dependencies between computational steps, cache intermediate results, and enable selective
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re-execution when inputs change. Two complementary approaches exist within the Nix ecosystem.

Using {targets} Within Nix. The {targets} package (Landau, 2021) provides workflow

orchestration for R-based projects. To integrate {targets} with Nix, include targets in the

r_pkgs parameter of rix() and execute the pipeline within nix-shell using Rscript -e

'targets::tar_make()'. A shell hook can also be added via the shell_hook argument to run

the pipeline automatically when entering the Nix shell. This approach is ideal for projects that

remain within R and do not require different environments for different pipeline steps (see {rix}

documentation: https://docs.ropensci.org/rix/articles/reproducible-pipelines.html).

Using {rixpress} for Multi-Language Pipelines. The {rixpress} package (Rodrigues,

2025), a sister package to {rix}, uses Nix itself as the build automation tool rather than operating

within a Nix environment. Each pipeline step becomes a Nix derivation, built in isolation with

automatic caching based on content. The key advantage emerges in multi-language workflows:

different steps can execute in different Nix-defined environments (e.g., one step using a specific

version of R, another using Python, another using Julia). The interface, inspired by {targets}, uses

functions like rxp_r(), rxp_py(), and rxp_jl() to define pipeline steps (see {rixpress}

documentation: https://docs.ropensci.org/rixpress/articles/intro-concepts.html). The GitHub

repository for this article directs interested readers to a demonstration of {rixpress} applied to this

entire project.

Converting Existing {renv} Projects

Researchers with existing {renv} projects can migrate using the renv2nix() function,

which reads an renv.lock file and generates an equivalent Nix expression. This is particularly

valuable for projects where {renv} encountered system dependency issues or where stricter

reproducibility guarantees are desired. Unlike {renv}, which captures R package versions but not

the R interpreter or system libraries, Nix manages all layers of the software stack (see {rix}

documentation: https://docs.ropensci.org/rix/articles/renv2nix.html).

https://docs.ropensci.org/rix/articles/reproducible-pipelines.html
https://docs.ropensci.org/rixpress/articles/intro-concepts.html
https://docs.ropensci.org/rix/articles/renv2nix.html
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Containerization with Docker

Nix and Docker are not necessarily mutually exclusive (Rodrigues & Baumann, 2026).

Researchers already using Docker do not need to abandon it to benefit from Nix—the two can be

combined by using Nix inside Docker containers to handle environment setup (Rodrigues &

Baumann, 2025). This is particularly useful for deployment to cloud platforms or

high-performance computing clusters where Docker is standard but Nix may not be available (see

{rix} documentation: https://docs.ropensci.org/rix/articles/nix-inside-docker.html).

Discussion

Reproducibility in computational research is often treated as a matter of

transparency—making data and code available. This tutorial has argued that transparency alone is

insufficient without the ability to reliably reconstruct the computational environments in which

analyses are executed. For simulation studies in particular, where results depend critically on

software versions, system libraries, and random number generation, environment-level

reproducibility is not optional but essential.

By introducing Nix and the {rix} package, we demonstrated a practical and accessible

approach to fully specifying and rebuilding computational environments for simulation-based

research. This approach enables analyses and manuscripts to be rerun identically across machines

and over time, transforming reproducibility from an aspirational goal into a verifiable property of

the research workflow.

Importantly, adopting environment reproducibility does not require abandoning existing

analytic practices. Nix is agnostic to programming language, editor, workflow structure, and

manuscript template, allowing researchers to retain familiar tools while strengthening the

reliability of their work. In this sense, reproducible environments serve as enabling

infrastructure—supporting, rather than replacing, other best practices such as version control,

workflow orchestration, and transparent reporting.

If reproducibility is to function as a cornerstone of cumulative science, then the ability to

reconstruct computational environments must become a routine part of methodological practice.

https://docs.ropensci.org/rix/articles/nix-inside-docker.html
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Tools such as Nix and {rix} lower the barrier to achieving this goal, making fully reproducible

simulation research feasible without requiring deep systems expertise. We hope this tutorial helps

normalize environment-level reproducibility as a standard component of rigorous computational

research in psychology and beyond.
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Table 1
Performance metrics for ACE estimator across simulation conditions. Values in parentheses are
Monte Carlo standard errors (MCSE).
Sample
Size Confounding Relative Bias

Relative
RMSE Coverage CI Width

50 none 0.957 (0.042) 0.422 (0.035) 0.910 (0.029) 0.224 (0.004)
100 none 1.013 (0.026) 0.256 (0.020) 0.930 (0.026) 0.159 (0.002)
2000 none 0.997 (0.006) 0.059 (0.005) 0.960 (0.020) 0.036 (0.000)
50 mild 1.173 (0.036) 0.395 (0.034) 0.890 (0.031) 0.222 (0.004)
100 mild 1.157 (0.028) 0.318 (0.026) 0.870 (0.034) 0.154 (0.002)
2000 mild 1.114 (0.006) 0.130 (0.006) 0.510 (0.050) 0.035 (0.000)
50 severe 1.200 (0.044) 0.482 (0.054) 0.870 (0.034) 0.223 (0.005)
100 severe 1.235 (0.030) 0.379 (0.027) 0.830 (0.038) 0.157 (0.002)
2000 severe 1.257 (0.007) 0.266 (0.007) 0.020 (0.014) 0.035 (0.000)



REPRODUCIBILITY WITH {RIX} 31

Figure 1
Performance of ACE estimator across sample sizes and confounding severity. Panel A shows
relative bias, Panel B shows relative RMSE, Panel C shows coverage probability of 95%
confidence intervals (dashed line at nominal 0.95 level), and Panel D shows average confidence
interval width. Results demonstrate that model misspecification induces systematic bias that
persists across sample sizes, while increasing sample size improves precision but not accuracy
under misspecification.
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Appendix A

Simulation Study Design

Here we present a rather short description following recommendations from previous research,

but ideally even more may be reported (Morris et al., 2019; Pawel et al., 2025; Siepe et al., 2024;

White et al., 2024). This mimics a methods or similar section in articles.

Factorial Design. The simulation employs a full factorial design with two factors: sample

size (𝑛 ∈ {50, 100, 2000}) and degree of confounding non-linearity (𝛾2 ∈ {0, 0.3, 0.8}, labeled as

none, mild, and severe). The parameter 𝛾2 controls the strength of the quadratic confounder effect

on the outcome (see Data Generation). This yields nine conditions, each replicated 𝐾 = 100 times.

Data Generation. For each replication, data are generated following a causal structure

where a confounder 𝑋2 affects both treatment assignment and the outcome. The confounder and

treatment error term are generated using the {rvinecopulib} package: pairs (𝑈1,𝑈2) are drawn

from an independence copula via rbicop(), then transformed to standard normals via

𝑋2 = Φ−1(𝑈1) and 𝜖 = Φ−1(𝑈2). The independence copula is simply 𝐶 (𝑢, 𝑣) = 𝑢𝑣, meaning the

resulting uniforms are independent—mathematically equivalent to calling rnorm() directly. We

use {rvinecopulib} intentionally because it depends on C++ libraries.

Treatment assignment follows 𝑋1 = 𝛼0 + 𝛼1𝑋2 + 𝛼2𝑋
2
2 + 𝜖 where 𝛼0 = 0, 𝛼1 = 0.5, and

𝛼2 = 0.2. This creates confounding because 𝑋2 influences treatment assignment through both

linear and quadratic terms. The binary outcome is generated from the true logistic regression

model:

logit(𝑃(𝑌 = 1 | 𝑋1, 𝑋2)) = 𝛽0 + 𝛽1𝑋1 + 𝛾1𝑋2 + 𝛾2𝑋
2
2

with parameters 𝛽0 = −0.5, 𝛽1 = 0.7 (the causal effect of interest), 𝛾1 = −0.4, and 𝛾2 varying by

condition. The analyst misspecifies the outcome model by omitting the quadratic confounder

term, fitting instead:

logit(𝑃(𝑌 = 1 | 𝑋1, 𝑋2)) = 𝛽0 + 𝛽1𝑋1 + 𝛾1𝑋2

This misspecification creates residual confounding because the omitted term 𝛾2𝑋
2
2 is
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correlated with 𝑋1 (since 𝑋1 depends on both 𝑋2 and 𝑋2
2 ), violating the conditional

exchangeability assumption given linear adjustment alone.

Estimand. The target estimand is the average causal effect (ACE) of 𝑋1 on 𝑌 , properly

adjusted for confounding:

ACE(𝑋1) = E
[
𝜕𝑃(𝑌 = 1 | 𝑋1, 𝑋2)

𝜕𝑋1

]
= E

[
𝛽1 ·

exp(𝜂)
(1 + exp(𝜂))2

]
where 𝜂 = 𝛽0 + 𝛽1𝑋1 + 𝛾1𝑋2 + 𝛾2𝑋

2
2 is the correctly specified linear predictor, and the expectation

is taken over the joint distribution of (𝑋1, 𝑋2). For each 𝛾2 condition, the “true” ACE (denoted 𝜃)

is approximated once using a very large sample (𝑁 = 200, 000) with the correctly specified model

including 𝑋2
2 .

Estimator. The causal effect is estimated from the misspecified model (omitting 𝑋2
2 ) as:

�ACE(𝑋1) =
1
𝑛

𝑛∑
𝑖=1

𝛽1 ·
exp(𝜂𝑖)

(1 + exp(𝜂𝑖))2

where 𝜂𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛾̃1𝑋𝑖2 and 𝜷̃ = (𝛽0, 𝛽1, 𝛾̃1) are maximum likelihood estimates from the

misspecified logistic regression.

Performance Criteria. Table B1 presents the performance criteria used to evaluate the

ACE estimator across simulation conditions.

Computational Details. The simulation was conducted on a MacBook Pro (Apple M4

Pro Chip), running macOS Sequoia 15.7.3. All analyses were performed in R (version 4.5.2).

Parallel processing was implemented through the {doParallel} package [version 1.0.17;

Corporation and Weston (2022)], with {doRNG} [version 1.8.6.2; Gaujoux (2025)] to ensure

independent and reproducible random number streams. For data generation we used the

{rvinecopulib} package [version 0.7.3.1.0; Nagler and Vatter (2025)]. The estimator was

implemented using the {marginaleffects} package [version 0.31.0; Arel-Bundock et al. (2024)].

Data wrangling was performed with {dplyr} [version 1.1.4; Wickham et al. (2023)]. Method

performance was assessed through multiple metrics following the formulas from the {simhelpers}
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package [version 0.3.1; Joshi and Pustejovsky (2025)]. Figures were produced with {ggplot2}

[version 4.0.1; Wickham (2016)] and {cowplot} [version 1.2.0; Wilke (2025)].
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Appendix B

Clarifying the packages used

R Packages

Reproducibility Infrastructure

rix: Generates the Nix expression (default.nix) for reproducible environments.

Simulation Study

These packages are used in the Simulation_Scripts/ folder:

rvinecopulib (used in 01_data_generation.R): Generates correlated data via copulas

using the rbicop() function.

marginaleffects (used in 02_models.R): Computes average causal effects via the

avg_slopes() function.

doParallel (used in 03_run_simulation.R): Enables parallel foreach loops across

CPU cores.

doRNG (used in 03_run_simulation.R): Makes parallel RNG reproducible.

simhelpers (used in 04_performance_metrics.R): Calculates bias, RMSE, and

coverage metrics.

ggplot2 (used in 05_plots.R): Creates simulation result visualizations.

cowplot (used in 05_plots.R): Combines plots with plot_grid() and extracts legends.

dplyr (used in article.qmd): Data wrangling for results reported in Table 1.

Dynamic Document Generation

quarto: R interface to invoke Quarto rendering.

knitr: Executes R code chunks in .qmd files.

svglite: SVG graphics device; apaquarto sets dev: svglite for HTML output.

LaTeX Packages

Required by apaquarto Extension

These are loaded in apaquarto’s header.tex or apatemplate.tex:
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amsmath: Math environments (align, equation, etc.).

threeparttablex: Tables with notes below (APA table format).

tcolorbox: Callout boxes (note, warning, tip blocks).

fontawesome5: Icons in callouts.

multirow: Table cells spanning multiple rows.

newtx: Times-like fonts (default when no custom mainfont).

geometry: Page margins.

Dependencies of apaquarto Packages

environ: Dependency of tcolorbox.

pdfcol: Dependency of tcolorbox.

tikzfill: Dependency of tcolorbox.

fontaxes: Dependency of newtx.

xstring: Template conditionals.

scalerel: Dependency of apa7 class.

Required by apa7 Document Class

apa7: The document class itself (\documentclass{apa7}).

endfloat: Moves floats to end of document in manuscript mode.

threeparttable: Dependency for threeparttablex.

Required by Quarto PDF Rendering

framed: Shaded/framed regions for callouts.

fvextra: Enhanced verbatim for syntax-highlighted code blocks.

fancyvrb: Verbatim environments for code display.

setspace: Line spacing; also used in article.qmd for single-spaced code blocks.

anyfontsize: Arbitrary font sizes in code blocks.

Additional Packages

ninecolors: Extended color palettes.
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wrapfig: Text wrapping around figures.

tabularray: Modern table typesetting.

siunitx: SI units and number formatting.
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Table B1
Performance criteria for evaluating the ACE estimator. 𝜃𝑘 denotes the ACE estimate from
replication 𝑘 (for 𝑘 = 1, . . . , 𝐾), where 𝐾 = 1000 is the number of replications, and 𝜃 denotes the
true ACE for a given condition. For coverage and width criteria, 𝐴𝑘 and 𝐵𝑘 denote the lower and
upper endpoints of the 95% confidence interval from replication 𝑘 ,𝑊𝑘 = 𝐵𝑘 − 𝐴𝑘 is the interval
width, 𝑐𝛽 is the estimated coverage probability, and 𝐼 (·) is an indicator function equaling 1 if the
condition is true and 0 otherwise. The Monte Carlo standard error (MCSE) quantifies the
simulation uncertainty in each performance measure estimate

Criterion Estimate MCSE

Bias 1
𝐾

∑𝐾
𝑘=1 𝜃𝑘 − 𝜃

√
1

𝐾 (𝐾−1)
∑𝐾
𝑘=1(𝜃𝑘 −

¯̂𝜃)2

Variance 1
𝐾−1

∑𝐾
𝑘=1(𝜃𝑘 −

¯̂𝜃)2
√
𝐾−1
𝐾 · 1

𝐾−1
∑𝐾
𝑘=1(𝜃𝑘 −

¯̂𝜃)2

RMSE
√

1
𝐾

∑𝐾
𝑘=1(𝜃𝑘 − 𝜃)2

√
𝐾−1
𝐾

∑𝐾
𝑗=1

(√
(𝜃 𝑗 − 𝜃)2 − 𝑅𝑀𝑆𝐸

)2

Relative Bias 1
𝜃𝐾

∑𝐾
𝑘=1 𝜃𝑘

1
𝜃

√
1

𝐾 (𝐾−1)
∑𝐾
𝑘=1(𝜃𝑘 −

¯̂𝜃)2

Relative RMSE 1
𝜃

√
1
𝐾

∑𝐾
𝑘=1(𝜃𝑘 − 𝜃)2 1

𝜃

√
𝐾−1
𝐾

∑𝐾
𝑗=1

(√
(𝜃 𝑗 − 𝜃)2 − 𝑅𝑀𝑆𝐸

)2

Coverage 1
𝐾

∑𝐾
𝑘=1 𝐼 (𝐴𝑘 ≤ 𝜃 ≤ 𝐵𝑘 )

√
𝑐𝛽 (1−𝑐𝛽)

𝐾

Width 1
𝐾

∑𝐾
𝑘=1(𝐵𝑘 − 𝐴𝑘 )

√
1

𝐾 (𝐾−1)
∑𝐾
𝑘=1(𝑊𝑘 − 𝑊̄)2
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