REPRODUCIBILITY WITH {RIX} 1

Why Risk it, When You Can {rix} it: A Tutorial for Computational Reproducibility Focused

on Simulation Studies

Felipe Fontana Vieira!, Jason Geller?, and Bruno Rodrigues3
'Department of Data Analysis, Ghent University
“Department of Psychology and Neuroscienc, Boston College
3Statistics and Data Strategy Departments, Ministry of Research and Higher Education,

Luxembourg

REPRODUCIBILITY WITH {RIX} 2

Author Note

Felipe Fontana Vieira () https://orcid.org/0009-0006-0949-6569

Jason Geller (© https://orcid.org/0000-0002-7459-4505

Bruno Rodrigues (2 https://orcid.org/0000-0002-3211-3689

Data and materials from this study can be accessed at
https://github.com/felipelfv/Why-risk-it-when-you-can-rix-it. The authors have no conflicts of
interest to declare. We would like to thank Julia Rohrer and Ole Schacht for their helpful feedback
on earlier versions of this manuscript. Author roles were classified using the Contributor Role
Taxonomy (CRediT; https://credit.niso.org/) as follows: Felipe Fontana Vieira: Conceptualization,
Methodology, Software, Data curation, Formal analysis, Visualization, Writing - original draft,
Writing - review & editing; Jason Geller: Conceptualization, Supervision, Validation, Writing -
review & editing; Bruno Rodrigues: Conceptualization, Software, Writing - review & editing

Correspondence concerning this article should be addressed to Felipe Fontana Vieira,

Email: felipe.fontanavieira@ugent.be

https://orcid.org/0009-0006-0949-6569
https://orcid.org/0000-0002-7459-4505
https://orcid.org/0000-0002-3211-3689
mailto:felipe.fontanavieira@ugent.be

REPRODUCIBILITY WITH {RIX} 3

Abstract

Computational reproducibility remains limited in psychological research, despite widespread
norms for sharing data and analysis code. One reason is that reproducibility exists on a
continuum, ranging from partial transparency—such as providing scripts or software version
numbers—to fully executable research compendia that regenerate all results from raw code. In
this article, we introduce Nix and the {rix} R package as a practical framework for achieving full
computational reproducibility in simulation-based research. We provide a step-by-step tutorial
demonstrating how {rix} can be used to define, build, and share isolated, project-specific software
environments that precisely capture R versions, package dependencies, system libraries, and
integrated development environments. We further illustrate this workflow by reproducing a
complete manuscript using Quarto and the {apaquarto} extension, showing how analyses, figures,
and text can be regenerated in a single, executable pipeline. Together, these tools lower the
technical barrier to robust, end-to-end reproducibility and offer a scalable solution for simulation
studies and methodological research in psychology and related fields.

Keywords: reproducibility, Nix, simulation studies, R, computational methods

REPRODUCIBILITY WITH {RIX} 4

Why Risk it, When You Can {rix} it: A Tutorial for Computational Reproducibility Focused

on Simulation Studies

Psychological science is in the midst of a credibility revolution, which has prompted
substantial progress in how research is conducted and evaluated (Vazire, 2018). Yet, despite
notable progress, a key cornerstone of science, reproducibility (i.e., the ability to precisely
reproduce the results of a study or studies based on provided data, code, materials, and
software/hardware) remains limited (Hardwicke et al., 2020). Hence, ensuring reproducibility
remains an open and pressing challenge for psychological science.

Addressing this gap is complicated by the fact that reproducibility is not a binary feature
but instead exists along a continuum (Peng, 2011). At the lower end, reproducibility may be
interpreted as sharing only a manuscript. Further along the spectrum, it may involve providing
partial code, complete analysis scripts, or publicly accessible datasets. At the highest level,
reproducibility entails documenting a fully specified computational environment that allows
others to recreate identical results—from raw data to final manuscript output—with minimal
friction. As a result, researchers may implicitly target different points on this continuum, and
efforts to improve reproducibility can diverge substantially in both goals and implementation.

Open science initiatives have made considerable progress in encouraging movement along
this spectrum. For example, journals now offer open-science badges (Kidwell et al., 2016), best
practices have been developed to make data sharing routine (Levenstein & Lyle, 2018), and
platforms such as the Open Science Framework (OSF) provide infrastructure for storing and
sharing research materials (Nosek et al., 2015). However, these efforts primarily target the lower
to middle portions of the continuum, emphasizing what is shared rather than how shared materials
can be executed in practice.

Data and code are never fully self-sufficient to reproduce a set of findings (Epskamp,
2019; Peikert & Brandmaier, 2021; Wiebels & Moreau, 2021; Ziemann et al., 2023). Assuming
the data and code are error-free, reproducibility depends on a hierarchy of software

components—collectively referred to as dependencies—including the programming language

REPRODUCIBILITY WITH {RIX} 5

version, the packages used in the analysis, and the system libraries on which those packages rely.
When these dependencies differ from those used in the original analysis, code may fail, behave
inconsistently across machines, or yield conflicting numerical results (Baker et al., 2024; Glatard
et al., 2015; Hodges et al., 2023; Nosek et al., 2022). These issues are particularly acute for
simulation studies, which rely on complex codebases, versioned dependencies, and intricate
software configurations (Luijken et al., 2024; Siepe et al., 2024).

To make this concrete, we use computational environment to refer to the complete software
context required for an analysis to run successfully—the programming language version, package
versions, system libraries, and operating system (Rodrigues, 2023; Rodrigues & Baumann, 2026).
We define computational environment reproducibility as the ability to reconstruct this entire set of
software dependencies on any machine and at any future time, such that executing the same code
yields the same numerical results. Empirical assessments show that current practice falls short of
this ideal. Siepe et al. (2024) report that nearly two-thirds of simulation studies in psychology
provide no accompanying code, and among those that do, documentation of the computational
environment is rarely included. This gap is consequential: simulation studies inform
methodological recommendations, meaning that insufficient reproducibility undermines
confidence in those recommendations (Luijken et al., 2024; White et al., 2024).

Arguably, these challenges persist because researchers must navigate a fragmented
landscape of solutions, each addressing only part of the problem. Package-level managers such as
{renv} (Ushey, 2024) and {groundhog} (Simonsohn, 2020) stabilize R package versions but do
not manage the R interpreter itself or the system-level libraries those packages depend on.
Workflow orchestration tools such as {targets} (Landau, 2021) and Make (Feldman, 1979)
support reproducibility in a different sense: they specify the structure of an analysis by
formalizing the order in which steps should run and by tracking dependencies among intermediate
results. These tools clarify Zow an analysis proceeds, but they assume that the software stack
required to run each step is already stable. Containerization tools such as Docker, including

R-focused implementations like Rocker (Boettiger, 2015; Boettiger & Eddelbuettel, 2017) offer a

REPRODUCIBILITY WITH {RIX} 6

more comprehensive approach by bundling the full environment (i.e., operating system, system
libraries, interpreter versions, and packages) into a single executable image. Yet their use requires
familiarity with Linux system administration, and even containerization may suffer from temporal
drift when Dockerfiles rely on mutable upstream repositories (Malka et al., 2024). For a detailed
comparison of these tools and their limitations, see Rodrigues and Baumann (2026). Researchers
thus face a difficult choice between solutions that are accessible but incomplete or approaches that
are powerful but demand technical expertise.

In this article, therefore, we focus specifically on computational environment
reproducibility as the foundation upon which other reproducibility practices depend. For that, we

introduce Nix (Dolstra et al., 2004), a functional software!

ecosystem designed to make software
installation deterministic, and {rix} (Rodrigues & Baumann, 2025), an R interface that allows
researchers to use Nix without needing deep knowledge of its underlying language or
infrastructure. Our main objective with the tutorial is not to introduce a specific workflow
orchestration system or to prescribe a particular analytic structure. Instead, we aim to show what
Nix and {rix} are and how they can establish a stable, cross-platform environment within which
any simulation study—whether organized in simple, documented script sequences (e.g., .R files
that source () others), through more formal orchestration tools (e.g., {targets}) or embedded as
code chunks in .Rmd or . gmd—can be executed reliably.

We illustrate these ideas through a reproducible simulation study conducted in R,
culminating in this automated APA-formatted manuscript generated with apaquarto (Schneider,
2024). Although the example centers on R because of its prominence in psychological
methodology, the principles underlying environment reproducibility with {rix} apply equally to
other languages, including Python and Julia, and to different development environments such as

RStudio, VS Code, Emacs, or Positron. At the end of the article, we also briefly introduce

{rixpress} (Rodrigues, 2025), a workflow orchestration tool that builds on Nix to coordinate

! Functional is used in the sense of functional programming (pure functions, immutability, explicit inputs), not in the
colloquial sense of working.

REPRODUCIBILITY WITH {RIX} 7

pipelines across R, Python, and Julia.
A Practical Example: Setting up a Reproducible Simulation Study with {rix}

Imagine you have just been awarded a grant to conduct a large-scale simulation study. The
study is designed to evaluate the performance of a statistical estimator under varying
data-generating conditions (see Appendix A for full technical details). This tutorial is organized
around this scenario. We use this example to ground our discussion into a typical methods
section, but readers can follow the tutorial without engaging deeply with the simulation itself.

In practice, simulation studies are typically organized into multiple component files, each
corresponding to a distinct analytical stage, a modular structure that facilitates development and
debugging. In our case, the simulation is organized into five sequential scripts: data generation
(01_data_generation.R), model specification (02_models.R), simulation execution
(03_run_simulation.R), performance metric calculation (04_performance_metrics.R), and
results visualization (05_plots.R). However, because our focus is on the reproducibility of the
entire manuscript, we embed all code directly within this document as executable chunks in a
single .qgmd file. When rendered, the simulation runs from start to finish, producing results and
figures automatically. This approach would be impractical for many real-world simulation studies,
which are often too computationally intensive. We return to this trade-off later in the tutorial.

Now suppose a researcher attempts to reproduce the simulation results reported in the
article. What might prevent them from obtaining identical outcomes? The natural first concern is
the version of packages. Installing R packages at a later time may lead to errors if functions have
been renamed or deprecated (e.g., lavaan:::lav_utils_get_ancestors renamed to
lavaan:::lav_graph_get_ancestors), or to subtly different results due to changes in default
settings (e.g., stringsAsFactors defaulting to FALSE as of R 4.0) or numerical
implementations. Beyond package versioning, many packages rely on system-level libraries that
must be installed separately from R. Our simulation illustrates this dependency structure directly:
the {rvinecopulib} package interfaces with a C++ backend and links against external libraries

such as Boost, Eigen, and RcppThread (Nagler & Vatter, 2025).

REPRODUCIBILITY WITH {RIX} 8

The R language version introduces another layer of dependency. Code written for R 4.0
may rely on syntax or functionality that is unavailable in earlier versions (e.g., the native pipe |>
introduced in R 4.1). More subtly, changes to R’s random number generation across major
versions mean that identical code executed with the same seed can nevertheless produce different
random sequences (Ottoboni & Stark, 2018). For simulation studies, where specific random draws
often underpin reported results, this version sensitivity is consequential.

Finally, when analyses are embedded in a literate programming workflow (i.e., documents
that combine narrative text and executable code; dynamic document generation) additional layers
of software dependencies arise. For example, rendering R Markdown (. rmd) or Quarto
documents (. qmd) requires both a document conversion tool (e.g., Pandoc, which converts . rmd
or .qgmd files into formats such as PDF or HTML) and a typesetting system such as a LaTeX
distribution or Typst. Each of these components introduces its own versioning constraints and
platform-specific installation requirements. Taken together, these layers highlight that
reproducibility depends not only on code and data, but also on the broader computational

environment in which analyses are executed.
Nix and {rix}: A Comprehensive Solution

A potential solution to this problem is Nix (Dolstra et al., 2004), a software ecosystem
whose primary concern is reproducible, declarative builds. To achieve this Nix is a programming
language, a build tool and a package manager. This article focuses mostly on Nix the package
manager. Most package managers (think of Apple’s or Android’s app stores) are imperative: they
modify a system’s state as they install or update software. Nix, in contrast, treats build instructions
and dependencies as immutable, enforcing reproducible, declarative, and isolated environments
across platforms. This allows researchers to specify exactly which versions of programming
languages, packages, and system libraries an analysis requires, and to recreate that environment
reliably on any machine.

Unlike familiar tools such as install.packages() in R, apt-get on Linux, or uv in

Python—which typically manage only a single layer of the software stack—Nix handles language

REPRODUCIBILITY WITH {RIX} 9

versions, package versions, and system-level dependencies within a single framework (Rodrigues
& Baumann, 2025). Rather than installing software into shared system directories, Nix builds
each environment as an explicit, self-contained specification. As a result, multiple environments
can coexist without conflict, and analyses can be rerun months or years later under identical
computational conditions.

This unified approach directly addresses the fragmented landscape described above.
Where researchers would otherwise need to coordinate separate tools for package management,
interpreter versions, and system dependencies, Nix brings all three together within a single

declarative model, lowering the barrier to fully reproducible computational workflows.
Core Principles

Rather than installing software into global directories (e.g., /usr/1ib), Nix places every
package in its own directory under /nix/store. Each package path contains a cryptographic
hash representing its precise inputs—source code, dependencies, and build instructions. Because
these paths are content-addressed, multiple versions of the same software can coexist without
conflict. A researcher can, for example, maintain projects requiring R 4.1.0 and R 4.3.3 side by
side, or use different package versions across analyses, switching between them seamlessly
(Rodrigues & Baumann, 2025).

The Nix ecosystem is built around nixpkgs, a version-controlled repository comprising
more than 120,000 packages, including nearly all of CRAN and Bioconductor. By pinning a
specific commit or date, researchers freeze the entire software stack (i.e., R itself, R packages, and
all system libraries) at the time of this writing. This eliminates the system-dependency problems
that tools like {renv} cannot address (Rodrigues & Baumann, 2025). This architecture also
ensures stability over time. Empirical work has shown strong rebuildability and reproducibility
rates for historical nixpkgs snapshots (Rodrigues & Baumann, 2026). Combined with binary
caches, which often allow environments to materialize in seconds, Nix becomes practical for

interactive research workflows (Rodrigues & Baumann, 2025).

REPRODUCIBILITY WITH {RIX} 10

The {rix} Package: R Interface to Nix

As previously stated, Nix is also a functional programming language. Because the Nix
package manager is declarative, it requires expressions written in this language to install software.
However, since Nix is a functional programming language unfamiliar to most researchers, we
recommend using {rix} to lower this barrier. The {rix} package provides an R-native interface: a
single call to rix () generates complete Nix configurations from standard R syntax, specifying R
versions, CRAN packages, system libraries, and even Python or Julia components when required.
Users never need to read or write Nix code directly, as {rix} translates automatically (Rodrigues
& Baumann, 2025).

A key feature of {rix} is its integration with rstats-on-nix, a community-maintained fork
offering daily CRAN snapshots and weekly tested environments on Linux and macOS.
Researchers can request, for example, rix (date = "2024-12-14") to obtain a validated and
reproducible environment without manually assessing compatibility. After the configuration is
generated, nix_build () instantiates the environment, and binary caches typically allow this to
complete within seconds (Rodrigues & Baumann, 2025).

Although Nix is capable of replacing tools like Docker for isolation or {renv} for package
management, it does not require an all-or-nothing transition. Researchers can adopt it gradually
and use it alongside familiar tooling. For instance, by building Docker images with Nix,
converting existing {renv} lockfiles, or running {targets} pipelines within a Nix-defined
environment (Rodrigues & Baumann, 2025). This allows Nix to strengthen reproducibility while

preserving established workflows. We will come back to this after the tutorial.
Step 1: Installing Nix and {rix}
Before proceeding, both Nix and the {rix} R package need to be installed. Installation

procedures differ across operating systems (Windows via WSL2, Linux, and macOS), and

detailed, up-to-date instructions are maintained in the official {rix} documentation:

* Linux and Windows (WSL2): https:

/Idocs.ropensci.org/rix/articles/b1-setting-up-and-using-rix-on-linux-and-windows.html

https://docs.ropensci.org/rix/articles/b1-setting-up-and-using-rix-on-linux-and-windows.html
https://docs.ropensci.org/rix/articles/b1-setting-up-and-using-rix-on-linux-and-windows.html

REPRODUCIBILITY WITH {RIX} 11

* macOS: https://docs.ropensci.org/rix/articles/b2-setting-up-and-using-rix-on-macos.html

Once Nix is installed?, there are two ways to access {rix}, depending on whether R is
already installed on your system. In this tutorial, we proceed as if R was already installed?

(Listing 1):

Listing 1 Installing {rix} from CRAN or developmental version

CRAN version
install.packages("rix")
Development version
install.packages(
"rix",
repos = c(
"https://ropensci.r-universe.dev"

)

Step 2: Specifying the Computational Environment

After that, we need to establish a reproducible environment by creating a script that will
generate the environment specification. We recommend creating a file named generate-env.R
(or similar) in the project directory. This script will use the rix () function from the {rix}
package to produce a default.nix file—a declarative specification that precisely defines all
software dependencies required for the project.

In our case, where we use literate programming for generating the manuscript, we
implement the following environment specification, which can be found on the GitHub repository

as a file named gen-env.R (Listing 2):

2 It is worth noting that {rix} can generate Nix expressions even without Nix installed on your system—you can write
a default.nix file without Nix, but you cannot build or enter the resulting environment unless Nix is installed
(Rodrigues & Baumann, 2025).

3 We, however, recommend uninstalling your local R and letting Nix manage R, R packages, and other tools entirely.
This approach avoids potential conflicts between system-installed and Nix-managed software, an issue we will
illustrate later in this tutorial. See https://docs.ropensci.org/rix/articles/setting-up-linux-windows.html#

case- I-you-dont-have-r-installed-and- wish-to-install-it-using-nix-as-well for more details.

https://docs.ropensci.org/rix/articles/b2-setting-up-and-using-rix-on-macos.html
https://docs.ropensci.org/rix/articles/setting-up-linux-windows.html#case-1-you-dont-have-r-installed-and-wish-to-install-it-using-nix-as-well
https://docs.ropensci.org/rix/articles/setting-up-linux-windows.html#case-1-you-dont-have-r-installed-and-wish-to-install-it-using-nix-as-well

REPRODUCIBILITY WITH {RIX} 12

Listing 2 Environment specification for the manuscript using rix()

library(rix)

rix(
date = "2026-01-14",
r_pkgs = c(

"rix", "quarto", "knitr", "marginaleffects",
"simhelpers", "ggplot2", "doParallel", "doRNG", "cowplot",
"dplyr", "svglite", "rvinecopulib"

),

system_pkgs = c("quarto"),

tex_pkgs = c("amsmath", "ninecolors", "apa7", "scalerel",
"threeparttable", "threeparttablex", "endfloat", "environ",
"multirow", "tcolorbox", "pdfcol", "tikzfill", "fontawesomeb",
"framed", "newtx", "fontaxes", "xstring", "wrapfig", "tabularray",
"siunitx", "fvextra", "geometry", "setspace", "fancyvrb",
"anyfontsize"

),

ide = "rstudio",

project_path = ".",

overwrite = TRUE

Thus, note that we have more than just the R packages specified for the simulation scripts.
This happens because we also included what is needed for the manuscript generation, not solely
for the simulation code. In Appendix B, we mention more specifically the reasons for adding each
package in r_pkgs () and tex_pkgs (). For now, we focus more on clarifying the different

arguments for the rix () function.
The Environment Generation Script

The rix () function* constructs this specification through a series of parameters that
collectively describe the computational environment. Each parameter serves a distinct purpose in

defining the environment’s characteristics.

4 For an overarching information on the function rix (), we suggest the following {rix} documentation:
https://docs.ropensci.org/rix/articles/project-environments.html

https://docs.ropensci.org/rix/articles/project-environments.html

REPRODUCIBILITY WITH {RIX} 13

Specifying the R version. Researchers must first determine which version of R to use.
This can be accomplished in two ways: The r_ver argument accepts an exact version string (e.g.,
“4.3.3”) or special designations such as “latest-upstream” for the most recent stable release.
Alternatively, the date argument specifies a particular date (e.g., “2024-11-15"), which ensures
that R and all packages correspond to the versions available on that date. The date-based approach
is generally preferable for reproducibility, as it captures a complete snapshot of the R ecosystem at
a single point in time. For this tutorial, as shown on top, we use the date parameter to ensure
temporal consistency across all software components (Rodrigues & Baumann, 2025) (see {rix}
documentation for more: https://docs.ropensci.org/rix/articles/project-environments.html).

Declaring R package dependencies. The r_pkgs argument accepts a character vector
listing all required R packages by their CRAN names. These packages will be installed from the
version repository corresponding to the specified date or R version. It is important to list all
packages that the analysis will load directly; dependencies of these packages are automatically
resolved by Nix. For packages requiring specific versions not corresponding to the chosen date,
researchers can specify exact versions using the syntax "packagename@version" (e.g.,
"ggplot202.2.1"). For packages available only on GitHub or other Git repositories, the
git_pkgs argument accepts a list structure containing repository URLs and specific commit

hashes. For example:

Listing 3 Example for the git_pkgs argument

git_pkgs = list(
package name = "marginaleffects",
repo_url = "https://github.com/vincentarelbundock/marginaleffects",
commit = "304bff91dc31ae28b227a8485bfadf7bdc86d625"

This ensures that exact development versions are obtained (Rodrigues & Baumann, 2025).
For our simulation study, all packages were used with their CRAN versions (see {rix}

documentation for more details: https://docs.ropensci.org/rix/articles/installing-r-packages.html).

https://docs.ropensci.org/rix/articles/project-environments.html
https://docs.ropensci.org/rix/articles/installing-r-packages.html

REPRODUCIBILITY WITH {RIX} 14

Including system-level dependencies. Many R-based workflows require tools beyond R
packages. The system_pkgs parameter specifies system-level software such as Quarto for
document generation, Git for version control, or Pandoc for document conversion. Critically, we
include Quarto as a system package because this tutorial demonstrates full computational
reproducibility—not merely of the simulation code, but of the complete manuscript itself. Our
manuscript uses the apaquarto extension for APA formatting, stored in the project’s
_extensions/ directory (Rodrigues & Baumann, 2025) (see {rix} documentation for more:
https://docs.ropensci.org/rix/articles/installing-system-tools.html).

Specifying LaTeX packages. The tex_pkgs parameter specifies LaTeX packages
needed for PDF compilation. When any packages are listed, Nix automatically includes a minimal
TexLive distribution (scheme-small) as a base, to which the specified packages are added.
Determining the required LaTeX packages may involve some trial and error—Quarto’s error
messages during, for example, the PDF rendering indicate which packages are missing, and these
can then be added to tex_pkgs (see {rix} documentation for more:
https://docs.ropensci.org/rix/articles/installing-system-tools.html). The tex packages included in
the above code offer a nice starting point for researchers wanting to create manuscripts using
LaTeX.

Configuring the development environment. The ide parameter controls whether an
integrated development environment (IDE) is included in the Nix environment, allowing users to
interactively develop and run code within their editor of choice. When ide is specified, the
project can be opened directly in the corresponding IDE, with all dependencies provided by the
Nix environment. For example, setting ide = "rstudio" installs a project-specific version of
RStudio inside the Nix environment. This is required for RStudio because, unlike most other
editors, it cannot attach to an external Nix shell unless it is itself installed via Nix. On macOS,
RStudio is only available through Nix for R versions 4.4.3 or later (or environments dated
2025-02-28 or later); for earlier R versions, alternative editors must be used. Other supported

IDEs include Positron (ide = "positron"), Visual Studio Code (ide = "code"), and

https://docs.ropensci.org/rix/articles/installing-system-tools.html
https://docs.ropensci.org/rix/articles/installing-system-tools.html

REPRODUCIBILITY WITH {RIX} 15

command-line interfaces such as Radian (ide = "radian"). These tools may either be installed
directly within the Nix environment using the ide parameter, or users may rely on an existing
system installation by setting ide = "none" (or ide = "other") and configuring direnv to
automatically load the Nix environment when the project directory is opened®. All IDEs installed
via Nix are project-specific and do not interfere with system-wide installations. Detailed
configuration instructions are provided in the {rix} documentation:
https://docs.ropensci.org/rix/articles/configuring-ide.html

Setting file output parameters. The project_path parameter indicates where the
default.nix file should be written (“.” denotes the current directory), while overwrite
controls whether an existing file should be replaced. Adding to this, setting print = TRUE,
which is another argument, displays the generated specification in the console for immediate
verification (Rodrigues & Baumann, 2025).

Multi-language environment support. While this tutorial focuses on R, researchers
working across multiple programming languages can include Python or Julia in their
environments. The py_conf parameter accepts a list specifying a Python version and required
packages (Listing 4). Similarly, j1_conf enables Julia package installation. This capability is
particularly useful, for example, for projects requiring statistical computing in R alongside
machine learning pipelines in Python or numerical optimization in Julia (Rodrigues & Baumann,
2025) (see {rix} documentation for more:

https://docs.ropensci.org/rix/articles/installing-r-packages.html).

Listing 4 Including Python packages

py_conf = list(py_version = "3.12", py_pkgs = c("polars", "pandas"))

> direnv is a lightweight utility that integrates with the user’s shell and automatically loads project-specific
environment settings when navigating into a directory (via a . envrc file), and unloads them when leaving. This
makes environment activation implicit and reduces the risk of running analyses in the wrong software context.

https://docs.ropensci.org/rix/articles/configuring-ide.html
https://docs.ropensci.org/rix/articles/installing-r-packages.html

REPRODUCIBILITY WITH {RIX} 16

Generating the Environment Specification

After defining the computational environment, the rix () function must be executed to
generate the default.nix file. This can be done interactively by running rix () in an R console
(Listing 2). The resulting default.nix file serves as the complete environment specification and

contains all information required to recreate the project in a fully reproducible manner.
Step 3: Building and Using the Reproducible Environment

Once Step 2 is complete, build the reproducible environment by navigating to the study
directory in a terminal. You may use either the integrated Terminal in RStudio (Tools — Terminal
— New Terminal) or an external system terminal from which you are running the Nix project.

From the study directory, run the following command (Listing 5):

Listing 5 Building the Nix environment

user@computer Why-risk-it-when-you-can-rix-it % nix-build

The expected output should look similar to (Listing 6):

Listing 6 Expected output from nix-build

unpacking 'https://github.com/rstats-on-nix/nixpkgs/archive/2025-08-25.tar.gz"
into the Git cache...

warning: ignoring untrusted substituter...

warning: ignoring the client-specified setting...

/nix/store/qa7fq20m2f94szsnqzciwv8h4n81w43v-nix-shell

This command builds the environment according to the specification. The first execution
will download and install all required packages, which may take a few minutes depending on
network speed and system resources. Subsequent builds use cached packages and complete in
seconds. Upon successful completion, a path to the constructed environment in the Nix store is
printed (here, /nix/store/qa7fq20m2f94szsnqzciwv8h4n81w43v-nix-shell), and a

symbolic link named result appears in the project directory pointing to this location.

REPRODUCIBILITY WITH {RIX} 17

Note that the warnings indicate that you are not configured as a trusted user, so Nix cannot
use the rstats-on-nix binary cache and will instead compile packages from source, which is slower.
To enable binary caching, install the cachix client and configure the rstats-on-nix cache. See
https://docs.ropensci.org/rix/articles/binary-cache.html for instructions.

To activate the environment, run (Listing 7):

Listing 7 Activating the Nix environment

user@computer Why-risk-it-when-you-can-rix-it % nix-shell

The expected output (if you have configured yourself as a trusted user, otherwise the same

warnings will appear) should look similar to (Listing 8):

Listing 8 Expected output from nix-shell

unpacking 'https://flakehub.com/f/DeterminateSystems/nixpkgs-weekly/..."
into the Git cache...
[nix-shell:~/AMPPS/Why-risk-it-when-you-can-rix-it]$

This command drops the user into a shell where all specified packages and tools are
available. The shell prompt changes to indicate that a Nix environment is active (here,
[nix-shell:~/Desktop/AMPPS/Why-risk-it-when-you-can-rix-it]$). To verify that R is
being provided by Nix rather than a system installation, run which R. This should return a path
within /nix/store/. Moreover, from within the Nix shell, users can launch their IDE by typing
its name (e.g., rstudio or positron), which opens the IDE with the Nix environment active

(Listing 9)°

6 Please note that activating an RStudio instance via Nix does not automatically open the specific project directory
you are working in. We therefore recommend creating an RStudio project file (.Rproj) and opening that file when
using Nix to ensure that RStudio is correctly associated with the intended project and environment.

https://docs.ropensci.org/rix/articles/binary-cache.html

REPRODUCIBILITY WITH {RIX} 18

Listing 9 Activating RStudio

[nix-shell:~/AMPPS/Why-risk-it-when-you-can-rix-it]$ rstudio

Reproducing the Complete Manuscript’

Within the nix shell, one is able to render the manuscript as follows in the terminal

(Listing 10):

Listing 10 Rendering the manuscript with Quarto

[nix-shell:~/AMPPS/Why-risk-it-when-you-can-rix-it]$
quarto render Manuscript/article.qmd

This command executes all code chunks in the manuscript, incorporates results (e.g.,
Table 1) and figures (e.g., Figure 1), and generates a formatted PDF following APA style
guidelines via the apaquarto extension (Schneider, 2024). This extension is saved in the project
repo already. To download this extension for your own work you can install the extension by using

the terminal (Listing 11):

Listing 11 Installing the apaquarto extension

user@computer Why-risk-it-when-you-can-rix-it % quarto use template
wjschne/apaquarto

or in the console (Listing 12):

Listing 12 Installing the apaquarto extension from R

quarto::quarto_use_template("wjschne/apaquarto")

The final document (.docx, .pdf, or .html) is saved directly in the project folder®. Because

7 See the {rix} documentation for more: https://docs.ropensci.org/rix/articles/literate-programming.html

8 Although we use apaquarto in this example, many alternative manuscript templates are available, and Nix is
agnostic to the specific template employed, provided the necessary extensions are installed.

https://docs.ropensci.org/rix/articles/literate-programming.html

REPRODUCIBILITY WITH {RIX} 19

Quarto is installed as a system-level package in our Nix specification, the rendering occurs
entirely within a fully reproducible environment, ensuring consistent output across machines
regardless of local software configurations. If desired, the manuscript can also be reproduced
interactively by opening the project folder in the user’s preferred IDE.

At this point, it is also worth noting that Nix shells do not fully isolate you from your
existing system by default (as mentioned in footnote 2). For R users, this has a practical
implication: packages installed in your regular R library (outside of Nix) could potentially be
loaded when running R from within the Nix environment. The {rix} package addresses this
automatically—when you call rix (), it also executes rix_init (), which creates a
project-specific .Rprofile. This file configures R to ignore external package libraries and also
disables install.packages () within the environment. The rationale is straightforward: any
new packages should be added to default.nix and the environment rebuilt, preserving full
reproducibility (Rodrigues & Baumann, 2025). However, for stricter isolation® that also prevents

access to other system programs not specified in default.nix, use the --pure flag (Listing 13):

Listing 13 Activating the Nix environment with strict isolation

nix-shell --pure

Reproducing the Simulation and Results

As previously mentioned, researchers may prefer not to use literate programming, or
embedding the simulation within a dynamic document may be impractical. In this case, one could
still follow the same steps shown thus far focusing only on the .R files while still benefiting from a
reproducible computational environment. For example, 03_run_simulation.R begins by
loading the required packages and sourcing other scripts that are needed:

As an illustration, if we were to focus solely on the computational reproducibility of the

° For example, when preparing this manuscript without the --pure flag, quarto render worked successfully.

However, when using the ——pure flag, the build failed. Running quarto check from within the Nix shell (i.e.,
nix-shell --run "quarto check") revealed that Quarto was still accessing the system’s LaTeX installation
(/Library/TeX/texbin) rather than being restricted to only what was specified in default.nix.

REPRODUCIBILITY WITH {RIX} 20

Listing 14 Code for running simulation

library(marginaleffects)

Source helper functions
source("Simulation_Scripts/01_data_generation.R")

code underlying the simulation and results, the environment specification would be considerably

simpler (Listing 15):

Listing 15 Environment specification for simulation-only computational reproducibility

rix(
date = "2026-01-14",
r_pkgs = c(
"simhelpers", "ggplot2", "doParallel", "doRNG", "cowplot", "dplyr",
"rvinecopulib", "marginaleffects"
) s
ide = "rstudio",

project_path = ".",
overwrite = TRUE

After following Steps 1-3 with this simpler specification, the simulation study may be

reproduced within the Nix shell (Listing 16) as follows:

Listing 16 Running the complete simulation workflow

[nix-shell:~/AMPPS/Why-risk-it-when-you-can-rix-it]$
Rscript Simulation_Scripts/03_run_simulation.R

In the same way, we could proceed with 04_performance metrics.R (Listing 17),
which loads the simulation results (in sim_results.rds) and calculates the performance metrics:
Similarly, 06_plots.R (Listing 18) uses those saved metrics (in

performance_summary.rds) to create the plots:

REPRODUCIBILITY WITH {RIX} 21

Listing 17 Running the performance metrics calculation

[nix-shell:~/AMPPS/Why-risk-it-when-you-can-rix-it]$
Rscript Simulation_Scripts/04_performance_metrics.R

Listing 18 Generating the visualization plots

[nix-shell:~/AMPPS/Why-risk-it-when-you-can-rix-it]$
Rscript Simulation_Scripts/05_plots.R

Therefore, the key advantage of executing within nix-shell is that all dependencies (i.e.,
R version, packages, and system tools) match exactly those specified in default.nix. Note,
however, that this approach relies on manually running scripts in sequence. It ensures a
reproducible environment but does not formalize the workflow itself; dependencies between

scripts remain implicit in the code rather than explicitly declared.
Additional Considerations for Advanced Workflows

Thus far, we have presented Nix and {rix} as standalone solutions for computational
reproducibility, contrasting initially them with tools like {renv}, Docker, and {targets}. However,
these tools are not mutually exclusive, as in many cases, they can complement each other
(Rodrigues & Baumann, 2025). Additionally, as highlighted in previous literature (Peikert &
Brandmaier, 2021; Piccolo & Frampton, 2016; Siepe et al., 2024), fully reproducible research
benefits not only from a stable computational environment but also from explicit workflow
orchestration. We therefore briefly introduce {rixpress}, which extends Nix-based reproducibility
to formalized, multi-language pipelines. These topics are not covered in depth; our goal is simply
to clarify how these tools relate to one another and orient readers toward resources for more

advanced use cases.
Workflow Orchestration: {targets} and {rixpress}

Complex simulation studies often benefit from workflow management systems that track

dependencies between computational steps, cache intermediate results, and enable selective

REPRODUCIBILITY WITH {RIX} 22

re-execution when inputs change. Two complementary approaches exist within the Nix ecosystem.

Using {targets} Within Nix. The {targets} package (Landau, 2021) provides workflow
orchestration for R-based projects. To integrate {targets} with Nix, include targets in the
r_pkgs parameter of rix () and execute the pipeline within nix-shell using Rscript -e
'targets::tar_make()'. A shell hook can also be added via the shell_hook argument to run
the pipeline automatically when entering the Nix shell. This approach is ideal for projects that
remain within R and do not require different environments for different pipeline steps (see {rix}
documentation: https://docs.ropensci.org/rix/articles/reproducible-pipelines.html).

Using {rixpress} for Multi-Language Pipelines. The {rixpress} package (Rodrigues,
2025), a sister package to {rix}, uses Nix itself as the build automation tool rather than operating
within a Nix environment. Each pipeline step becomes a Nix derivation, built in isolation with
automatic caching based on content. The key advantage emerges in multi-language workflows:
different steps can execute in different Nix-defined environments (e.g., one step using a specific
version of R, another using Python, another using Julia). The interface, inspired by {targets}, uses
functions like rxp_r (), rxp_py (), and rxp_jl() to define pipeline steps (see {rixpress}
documentation: https://docs.ropensci.org/rixpress/articles/intro-concepts.html). The GitHub
repository for this article directs interested readers to a demonstration of {rixpress} applied to this

entire project.
Converting Existing {renv} Projects

Researchers with existing {renv} projects can migrate using the renv2nix () function,
which reads an renv. lock file and generates an equivalent Nix expression. This is particularly
valuable for projects where {renv} encountered system dependency issues or where stricter
reproducibility guarantees are desired. Unlike {renv}, which captures R package versions but not
the R interpreter or system libraries, Nix manages all layers of the software stack (see {rix}

documentation: https://docs.ropensci.org/rix/articles/renv2nix.html).

https://docs.ropensci.org/rix/articles/reproducible-pipelines.html
https://docs.ropensci.org/rixpress/articles/intro-concepts.html
https://docs.ropensci.org/rix/articles/renv2nix.html

REPRODUCIBILITY WITH {RIX} 23

Containerization with Docker

Nix and Docker are not necessarily mutually exclusive (Rodrigues & Baumann, 2026).
Researchers already using Docker do not need to abandon it to benefit from Nix—the two can be
combined by using Nix inside Docker containers to handle environment setup (Rodrigues &
Baumann, 2025). This is particularly useful for deployment to cloud platforms or
high-performance computing clusters where Docker is standard but Nix may not be available (see

{rix} documentation: https://docs.ropensci.org/rix/articles/nix-inside-docker.html).
Discussion

Reproducibility in computational research is often treated as a matter of
transparency—making data and code available. This tutorial has argued that transparency alone is
insufficient without the ability to reliably reconstruct the computational environments in which
analyses are executed. For simulation studies in particular, where results depend critically on
software versions, system libraries, and random number generation, environment-level
reproducibility is not optional but essential.

By introducing Nix and the {rix} package, we demonstrated a practical and accessible
approach to fully specifying and rebuilding computational environments for simulation-based
research. This approach enables analyses and manuscripts to be rerun identically across machines
and over time, transforming reproducibility from an aspirational goal into a verifiable property of
the research workflow.

Importantly, adopting environment reproducibility does not require abandoning existing
analytic practices. Nix is agnostic to programming language, editor, workflow structure, and
manuscript template, allowing researchers to retain familiar tools while strengthening the
reliability of their work. In this sense, reproducible environments serve as enabling
infrastructure—supporting, rather than replacing, other best practices such as version control,
workflow orchestration, and transparent reporting.

If reproducibility is to function as a cornerstone of cumulative science, then the ability to

reconstruct computational environments must become a routine part of methodological practice.

https://docs.ropensci.org/rix/articles/nix-inside-docker.html

REPRODUCIBILITY WITH {RIX} 24

Tools such as Nix and {rix} lower the barrier to achieving this goal, making fully reproducible
simulation research feasible without requiring deep systems expertise. We hope this tutorial helps
normalize environment-level reproducibility as a standard component of rigorous computational

research in psychology and beyond.

REPRODUCIBILITY WITH {RIX} 25

References

Arel-Bundock, V., Greifer, N., & Heiss, A. (2024). How to interpret statistical models using
marginaleffects for R and Python. Journal of Statistical Software, 111(9), 1-32.
https://doi.org/10.18637/jss.v111.109

Baker, D. H., Berg, M., Hansford, K., Quinn, B., Segala, F., & Warden-English, E. (2024).
ReproduceMe: Lessons from a pilot project on computational reproducibility.
Meta-Psychology, 8, MP.2023.4021. https://doi.org/10.15626/MP.2023.4021

Boettiger, C. (2015). An introduction to Docker for reproducible research. ACM SIGOPS
Operating Systems Review, 49(1), 71-79. https://doi.org/10.1145/2723872.2723882

Boettiger, C., & Eddelbuettel, D. (2017). An introduction to Rocker: Docker containers for R. The
R Journal, 9(2), 527-536. https://doi.org/10.32614/RJ-2017-065

Corporation, M., & Weston, S. (2022). doParallel: Foreach parallel adaptor for the ’parallel’
package. https://CRAN.R-project.org/package=doParallel

Dolstra, E., De Jonge, M., & Visser, E. (2004). Nix: A safe and policy-free system for software
deployment. 18th Large Installation System Administration Conference, 79-92.

Epskamp, S. (2019). Reproducibility and replicability in a fast-paced methodological world.
Advances in Methods and Practices in Psychological Science, 2(2), 145-155.
https://doi.org/10.1177/2515245919847421

Feldman, S. I. (1979). Make — a program for maintaining computer programs. Software:
Practice and Experience, 9(4), 255-265. https://doi.org/10.1002/spe.4380090402

Gaujoux, R. (2025). doRNG: Generic reproducible parallel backend for ’foreach’ loops.
https://CRAN.R-project.org/package=doRNG

Glatard, T., Lewis, L. B., Ferreira da Silva, R., Adalat, R., Beck, N., Lepage, C., Rioux, P.,
Rousseau, M.-E., Sherif, T., Deelman, E., Khalili-Mahani, N., & Evans, A. C. (2015).
Reproducibility of neuroimaging analyses across operating systems. Frontiers in
Neuroinformatics, 9, 12. https://doi.org/10.3389/fninf.2015.00012

Hardwicke, T. E., Wallach, J. D., Kidwell, M. C., Bendixen, T., Criiwell, S., & Ioannidis, J. P. A.

https://doi.org/10.18637/jss.v111.i09
https://doi.org/10.15626/MP.2023.4021
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.32614/RJ-2017-065
https://CRAN.R-project.org/package=doParallel
https://doi.org/10.1177/2515245919847421
https://doi.org/10.1002/spe.4380090402
https://CRAN.R-project.org/package=doRNG
https://doi.org/10.3389/fninf.2015.00012

REPRODUCIBILITY WITH {RIX} 26

(2020). An empirical assessment of transparency and reproducibility-related research
practices in the social sciences (2014-2017). Royal Society Open Science, 7(2), 190806.
https://doi.org/10.1098/rs0s.190806

Hodges, C. B., Stone, B. M., Johnson, P. K., Carter, J. H., III, Sawyers, C. K., Roby, P. R., &
Lindsey, H. M. (2023). Researcher degrees of freedom in statistical software contribute to
unreliable results: A comparison of nonparametric analyses conducted in SPSS, SAS, Stata,
and R. Behavior Research Methods, 55(6), 2813-2837.
https://doi.org/10.3758/s13428-022-01932-2

Joshi, M., & Pustejovsky, J. (2025). Simhelpers: Helper functions for simulation studies.
https://CRAN.R-project.org/package=simhelpers

Kidwell, M. C., Lazarevié, L. B., Baranski, E., Hardwicke, T. E., Piechowski, S., Falkenberg,
L.-S., Kennett, C., Slowik, A., Sonnleitner, C., Hess-Holden, C., Errington, T. M., Fiedler, S.,
& Nosek, B. A. (2016). Badges to acknowledge open practices: A simple, low-cost, effective
method for increasing transparency. PLOS Biology, 14(5), €1002456.
https://doi.org/10.1371/journal.pbio.1002456

Landau, W. M. (2021). Targets: Dynamic function-oriented make-like declarative workflows.

Levenstein, M. C., & Lyle, J. A. (2018). Data: Sharing is caring. Advances in Methods and
Practices in Psychological Science, 1(1), 95-103.

Luijken, K., Lohmann, A., Alter, U., Claramunt Gonzalez, J., Clouth, F. J., Fossum, J. L., Hesen,
L., Huizing, A. H. J., Ketelaar, J., Montoya, A. K., Nab, L., Nijman, R. C. C., Penning de
Vries, B. B. L., Tibbe, T. D., Wang, Y. A., & Groenwold, R. H. H. (2024). Replicability of
simulation studies for the investigation of statistical methods: The RepliSims project. Royal
Society Open Science, 11(1), 231003. https://doi.org/10.1098/rs0s.231003

Malka, J., Zacchiroli, S., & Zimmermann, T. (2024). Reproducibility of build environments
through space and time. Proceedings of the 2024 ACM/IEEE 44th International Conference
on Software Engineering: New ldeas and Emerging Results, 97-101.
https://doi.org/10.1145/3639476.3639767

https://doi.org/10.1098/rsos.190806
https://doi.org/10.3758/s13428-022-01932-2
https://CRAN.R-project.org/package=simhelpers
https://doi.org/10.1371/journal.pbio.1002456
https://doi.org/10.1098/rsos.231003
https://doi.org/10.1145/3639476.3639767

REPRODUCIBILITY WITH {RIX} 27

Morris, T. P., White, I. R., & Crowther, M. J. (2019). Using simulation studies to evaluate
statistical methods. Statistics in Medicine, 38(11), 2074-2102.
https://doi.org/10.1002/sim.8086

Nagler, T., & Vatter, T. (2025). Rvinecopulib: High performance algorithms for vine copula
modeling. https://CRAN.R-project.org/package=rvinecopulib

Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S. D., Breckler, S. J., Buck, S.,
Chambers, C. D., Chin, G., Christensen, G., Contestabile, M., Dafoe, A., Eich, E., Freese, J.,
Glennerster, R., Goroff, D., Green, D. P., Hesse, B., Humphreys, M., ... Yarkoni, T. (2015).
Promoting an open research culture. Science, 348(6242), 1422—-1425.
https://doi.org/10.1126/science.aab2374

Nosek, B. A., Hardwicke, T. E., Moshontz, H., Allard, A., Corker, K. S., Dreber, A., Fidler, F.,
Hilgard, J., Kline Struhl, M., Nuijten, M. B., Rohrer, J. M., Romero, F., Scheel, A. M.,
Scherer, L. D., Schonbrodt, F. D., & Vazire, S. (2022). Replicability, robustness, and
reproducibility in psychological science. Annual Review of Psychology, 73, T19-748.
https://doi.org/10.1146/annurev-psych-020821-114157

Ottoboni, K., & Stark, P. B. (2018). Random problems with r. https://arxiv.org/abs/1809.06520

Pawel, S., Bartos, F., Siepe, B. S., & Lohmann, A. (2025). Handling missingness, failures, and
non-convergence in simulation studies: A review of current practices and recommendations.
The American Statistician, 1-18. https://doi.org/10.1080/00031305.2025.2540002

Peikert, A., & Brandmaier, A. M. (2021). A reproducible data analysis workflow. Quantitative and
Computational Methods in Behavioral Sciences, 1, €3763. https://doi.org/10.5964/qcmb.3763

Peng, R. D. (2011). Reproducible research in computational science. Science, 334(6060),
1226-1227.

Piccolo, S. R., & Frampton, M. B. (2016). Tools and techniques for computational reproducibility.
GigaScience, 5, 30. https://doi.org/10.1186/s13742-016-0135-4

Rodrigues, B. (2023). Building reproducible analytical pipelines with R. https://raps-with-r.dev

Rodrigues, B. (2025). Rixpress: Build reproducible analytical pipelines with ’'nix’.

https://doi.org/10.1002/sim.8086
https://CRAN.R-project.org/package=rvinecopulib
https://doi.org/10.1126/science.aab2374
https://doi.org/10.1146/annurev-psych-020821-114157
https://arxiv.org/abs/1809.06520
https://doi.org/10.1080/00031305.2025.2540002
https://doi.org/10.5964/qcmb.3763
https://doi.org/10.1186/s13742-016-0135-4
https://raps-with-r.dev

REPRODUCIBILITY WITH {RIX} 28

https://CRAN.R-project.org/package=rixpress

Rodrigues, B., & Baumann, P. (2025). Rix: Reproducible data science environments with ’'nix’.
https://CRAN.R-project.org/package=rix

Rodrigues, B., & Baumann, P. (2026). Nix for polyglot, reproducible data science workflows
(Version v0.0.1). Zenodo. https://doi.org/10.5281/zenodo.18138618

Schneider, W. J. (2024). Apaquarto [Computer software]. https://github.com/wjschne/apaquarto

Siepe, B. S., Bartos, F., Morris, T. P, Boulesteix, A.-L., Heck, D. W., & Pawel, S. (2024).
Simulation studies for methodological research in psychology: A standardized template for
planning, preregistration, and reporting. Psychological Methods.
https://doi.org/10.1037/met0000695

Simonsohn, U. (2020). Groundhog: Version-control for CRAN, github, and gitlab packages.

Ushey, K. (2024). Renv: Project environments.

Vazire, S. (2018). Implications of the credibility revolution for productivity, creativity, and
progress. Perspectives on Psychological Science, 13(4), 411-417.
https://doi.org/10.1177/1745691617751884

White, 1. R., Pham, T. M., Quartagno, M., & Morris, T. P. (2024). How to check a simulation
study. International Journal of Epidemiology, 53(1), dyad134.
https://doi.org/10.1093/ije/dyad 134

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York.
https://ggplot2.tidyverse.org

Wickham, H., Francois, R., Henry, L., Miiller, K., & Vaughan, D. (2023). Dplyr: A grammar of
data manipulation. https://CRAN.R-project.org/package=dplyr

Wiebels, K., & Moreau, D. (2021). Leveraging containers for reproducible psychological
research. Advances in Methods and Practices in Psychological Science, 4(2).
https://doi.org/10.1177/25152459211017853

Wilke, C. O. (2025). Cowplot: Streamlined plot theme and plot annotations for 'ggplot2’.

https://wilkelab.org/cowplot/

https://CRAN.R-project.org/package=rixpress
https://CRAN.R-project.org/package=rix
https://doi.org/10.5281/zenodo.18138618
https://github.com/wjschne/apaquarto
https://doi.org/10.1037/met0000695
https://doi.org/10.1177/1745691617751884
https://doi.org/10.1093/ije/dyad134
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=dplyr
https://doi.org/10.1177/25152459211017853
https://wilkelab.org/cowplot/

REPRODUCIBILITY WITH {RIX}

Ziemann, M., Poulain, P., & Bora, A. (2023). The five pillars of computational reproducibility:
Bioinformatics and beyond. Briefings in Bioinformatics, 24(6), bbad375.
https://doi.org/10.1093/bib/bbad375

29

https://doi.org/10.1093/bib/bbad375

REPRODUCIBILITY WITH {RIX}

Table 1

30

Performance metrics for ACE estimator across simulation conditions. Values in parentheses are
Monte Carlo standard errors (MCSE).

Sample Relative

Size Confounding Relative Bias RMSE Coverage CI Width
50 none 0.957 (0.042) 0.422(0.035) 0.910(0.029) 0.224 (0.004)
100 none 1.013 (0.026) 0.256 (0.020) 0.930 (0.026) 0.159 (0.002)
2000 none 0.997 (0.006) 0.059 (0.005) 0.960 (0.020) 0.036 (0.000)
50 mild 1.173 (0.036) 0.395(0.034) 0.890 (0.031) 0.222 (0.004)
100 mild 1.157 (0.028) 0.318 (0.026) 0.870(0.034) 0.154 (0.002)
2000 mild 1.114 (0.006) 0.130(0.006) 0.510(0.050) 0.035 (0.000)
50 severe 1.200 (0.044) 0.482(0.054) 0.870(0.034) 0.223 (0.005)
100 severe 1.235(0.030) 0.379(0.027) 0.830(0.038) 0.157 (0.002)
2000 severe 1.257 (0.007) 0.266 (0.007) 0.020 (0.014) 0.035 (0.000)

REPRODUCIBILITY WITH {RIX} 31

Figure 1

Performance of ACE estimator across sample sizes and confounding severity. Panel A shows
relative bias, Panel B shows relative RMSE, Panel C shows coverage probability of 95%
confidence intervals (dashed line at nominal 0.95 level), and Panel D shows average confidence
interval width. Results demonstrate that model misspecification induces systematic bias that

persists across sample sizes, while increasing sample size improves precision but not accuracy
under misspecification.

Relative Bias from Omitting X2 Relative Accuracy of ACE Estimation
0.5
1.2 0.4
@ Confounding W Confounding
o non-linearity < non-linearity
[} =03
o mild ° mild
=11 >
% -®- none = -®- none
ox -®- severe & 0.2 @ severe
0.1
Confounding
0 500 1000 1500 2000 0 500 1000 1500 2000 non-linearity
Sample size (n) Sample size (n) ”
mil
Coverage Under Residual Confounding Precision of ClI @ none
1.00 - severe
0.20
0.75
§ Confounding £ Confounding
f?) non-linearity ' 0.15 non-linearity
(2 ' O ,
o 0.50 mild - mild
? -®- none 2 -®- none
5 <
5 -©- severe a>.> 0.10 @ severe
<
O
0.25
0.05
0.00
0 500 1000 1500 2000 0 500 1000 1500 2000

Sample size (n) Sample size (n)

REPRODUCIBILITY WITH {RIX} 32

Appendix A
Simulation Study Design
Here we present a rather short description following recommendations from previous research,
but ideally even more may be reported (Morris et al., 2019; Pawel et al., 2025; Siepe et al., 2024;
White et al., 2024). This mimics a methods or similar section in articles.

Factorial Design. The simulation employs a full factorial design with two factors: sample
size (n € {50, 100, 2000}) and degree of confounding non-linearity (y, € {0,0.3, 0.8}, labeled as
none, mild, and severe). The parameter y; controls the strength of the quadratic confounder effect
on the outcome (see Data Generation). This yields nine conditions, each replicated K = 100 times.

Data Generation. For each replication, data are generated following a causal structure
where a confounder X, affects both treatment assignment and the outcome. The confounder and
treatment error term are generated using the {rvinecopulib} package: pairs (U;, U,) are drawn
from an independence copula via rbicop (), then transformed to standard normals via
X, = ®1(U)) and € = ®~!(U,). The independence copula is simply C(u, v) = uv, meaning the
resulting uniforms are independent—mathematically equivalent to calling rnorm() directly. We
use {rvinecopulib} intentionally because it depends on C++ libraries.

Treatment assignment follows X| = ag + a1 X2 + a2X22 + € where @9 = 0, a; = 0.5, and
a = 0.2. This creates confounding because X, influences treatment assignment through both
linear and quadratic terms. The binary outcome is generated from the true logistic regression
model:

logit(P(Y = 1| X1, X2)) = fo + B1X1 + y1X2 + 12X

with parameters Sy = —0.5, 81 = 0.7 (the causal effect of interest), y; = —0.4, and y, varying by
condition. The analyst misspecifies the outcome model by omitting the quadratic confounder
term, fitting instead:

logit(P(Y = 1| X1, X2)) = Bo + f1X1 + 71Xz

This misspecification creates residual confounding because the omitted term szZZ is

REPRODUCIBILITY WITH {RIX} 33

correlated with X; (since X; depends on both X; and X22), violating the conditional
exchangeability assumption given linear adjustment alone.
Estimand. The target estimand is the average causal effect (ACE) of X; on Y, properly

adjusted for confounding:

ACE(X)) =E

(9P(Y=1|X1,X2)] —E[,B ~_exp(n)
oX P (T exp(n)?

where n = Bo + B1 X1 + y1 X2 + 72X22 is the correctly specified linear predictor, and the expectation
is taken over the joint distribution of (X, X»). For each y, condition, the “true” ACE (denoted 6)
is approximated once using a very large sample (N = 200, 000) with the correctly specified model
including X22.

Estimator. The causal effect is estimated from the misspecified model (omitting X22) as:

exp(77:)

__ 1< 5
ACE(X)) =;;ﬁl'm

where 77; = ﬁo + ,5 1Xi1 + ¥1Xi2 and ﬁ = (,50, ﬁ~1, ¥1) are maximum likelihood estimates from the
misspecified logistic regression.

Performance Criteria. Table B1 presents the performance criteria used to evaluate the
ACE estimator across simulation conditions.

Computational Details. The simulation was conducted on a MacBook Pro (Apple M4
Pro Chip), running macOS Sequoia 15.7.3. All analyses were performed in R (version 4.5.2).
Parallel processing was implemented through the {doParallel} package [version 1.0.17;
Corporation and Weston (2022)], with {doRNG} [version 1.8.6.2; Gaujoux (2025)] to ensure
independent and reproducible random number streams. For data generation we used the
{rvinecopulib} package [version 0.7.3.1.0; Nagler and Vatter (2025)]. The estimator was
implemented using the {marginaleffects} package [version 0.31.0; Arel-Bundock et al. (2024)].
Data wrangling was performed with {dplyr} [version 1.1.4; Wickham et al. (2023)]. Method

performance was assessed through multiple metrics following the formulas from the {simhelpers}

REPRODUCIBILITY WITH {RIX}

package [version 0.3.1; Joshi and Pustejovsky (2025)]. Figures were produced with {ggplot2}
[version 4.0.1; Wickham (2016)] and {cowplot} [version 1.2.0; Wilke (2025)].

34

REPRODUCIBILITY WITH {RIX} 35

Appendix B
Clarifying the packages used

R Packages
Reproducibility Infrastructure

rix: Generates the Nix expression (default.nix) for reproducible environments.
Simulation Study

These packages are used in the Simulation_Scripts/ folder:

rvinecopulib (used in 01_data_generation.R): Generates correlated data via copulas
using the rbicop () function.

marginaleffects (used in 02_models.R): Computes average causal effects via the
avg_slopes () function.

doParallel (used in 03_run_simulation.R): Enables parallel foreach loops across
CPU cores.

doRNG (used in 03_run_simulation.R): Makes parallel RNG reproducible.

simhelpers (used in 04_performance _metrics.R): Calculates bias, RMSE, and
coverage metrics.

ggplot2 (used in 05_plots.R): Creates simulation result visualizations.

cowplot (used in 05_plots.R): Combines plots with plot_grid() and extracts legends.

dplyr (used in article.qgmd): Data wrangling for results reported in Table 1.
Dynamic Document Generation

quarto: R interface to invoke Quarto rendering.
knitr: Executes R code chunks in .qgmd files.

svglite: SVG graphics device; apaquarto sets dev: svglite for HTML output.
LaTeX Packages
Required by apaquarto Extension

These are loaded in apaquarto’s header.tex or apatemplate.tex:

REPRODUCIBILITY WITH {RIX}

amsmath: Math environments (align, equation, etc.).
threeparttablex: Tables with notes below (APA table format).
tcolorbox: Callout boxes (note, warning, tip blocks).
fontawesomeS5: Icons in callouts.

multirow: Table cells spanning multiple rows.

newtx: Times-like fonts (default when no custom mainfont).

geometry: Page margins.
Dependencies of apaquarto Packages

environ: Dependency of tcolorbox.
pdfcol: Dependency of tcolorbox.
tikzfill: Dependency of tcolorbox.
fontaxes: Dependency of newtx.
xstring: Template conditionals.

scalerel: Dependency of apa7 class.
Required by apa7 Document Class
apa7: The document class itself (\documentclass{apa7}).

endfloat: Moves floats to end of document in manuscript mode.

threeparttable: Dependency for threeparttablex.
Required by Quarto PDF Rendering

framed: Shaded/framed regions for callouts.

fvextra: Enhanced verbatim for syntax-highlighted code blocks.

fancyvrb: Verbatim environments for code display.

setspace: Line spacing; also used in article.qgmd for single-spaced code blocks.

anyfontsize: Arbitrary font sizes in code blocks.
Additional Packages

ninecolors: Extended color palettes.

REPRODUCIBILITY WITH {RIX}

wrapfig: Text wrapping around figures.
tabularray: Modern table typesetting.

siunitx: SI units and number formatting.

37

REPRODUCIBILITY WITH {RIX} 38

Table B1
Performance criteria for evaluating the ACE estimator. 9y denotes the ACE estimate from
replication k (for k = 1,...,K), where K = 1000 is the number of replications, and 6 denotes the

true ACE for a given condition. For coverage and width criteria, Ay and By denote the lower and
upper endpoints of the 95% confidence interval from replication k, Wy = By — Ay is the interval
width, cg is the estimated coverage probability, and 1(-) is an indicator function equaling 1 if the
condition is true and 0 otherwise. The Monte Carlo standard error (MCSE) quantifies the
simulation uncertainty in each performance measure estimate

Criterion Estimate MCSE

Bias LYK -6 \/m 5K (0 -0y

Variance ﬁ Zle(ék - 9:)2 — K 1 Zk 1(9k - 9)2

RMSE \/% K 6y - 6)2 \/— (6, - 9)2 m)z
Relative Bias e Dh_y Ok K(K 5 Zk (0, - 0)?

Relative RMSE g\/% SK 6k - 6)> \/ K-1 6, - 9)2 W)z
Coverage + Y I(Ax <0 < By) Cﬁ(l s)

width £ 2K (B - A \/m S (Wi - W)

	A Practical Example: Setting up a Reproducible Simulation Study with {rix}
	Nix and {rix}: A Comprehensive Solution
	Core Principles
	The {rix} Package: R Interface to Nix
	Step 1: Installing Nix and {rix}
	Step 2: Specifying the Computational Environment
	The Environment Generation Script

	Generating the Environment Specification
	Step 3: Building and Using the Reproducible Environment
	Reproducing the Complete Manuscript
	Reproducing the Simulation and Results

	Additional Considerations for Advanced Workflows
	Workflow Orchestration: {targets} and {rixpress}
	Converting Existing {renv} Projects
	Containerization with Docker

	Discussion
	References
	Simulation Study Design
	Clarifying the packages used
	R Packages
	Reproducibility Infrastructure
	Simulation Study
	Dynamic Document Generation

	LaTeX Packages
	Required by apaquarto Extension
	Dependencies of apaquarto Packages
	Required by apa7 Document Class
	Required by Quarto PDF Rendering
	Additional Packages

